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PREFACE TO THE NEAR EDITION

The author of Missile Aerodynamics, Dr. Jack N. Nielsen, has been 2.ie
foremost expert in the field for more than 35 years, and it is fitting that
this new edition of his book should coincide with his 70th birthday. It
is now 28 years since the initial publication of Missile Aerodynamics by
McGraw-Hill, and in this period considerable advances have been made
in aerodynamic prediction methods.

Most of these advances have been made in parallel with the growth
in the use and efficiency of computers. Today, in principle, the Navier-
Stokes equations can be solved to simulate the complete air flow around
a missile; however, in practice, deficiencies in algorithms and turbulence
modeling have prevented the realization of this goal. One of the un-
fortunate, but predictable, outcomes of this reliance on "brute force"
computations of aerodynamic phenomena is that present, and possibly
future, generations of aerodynamicists may not develop a sound back-
ground and understancqing of the basic theory of aerodynamics. This
can result in blind acceptance of computationally generated numbers.
It is hoped by the republication of Missile Aerodynamics that this basic
aerodynamic theory, especially as applied to missiles, will be more readily
available and thus can provide the background and insight essential to
critical examination of computational results.

Jack Nielsen has been the intellectual force behind most of the recent
advances in missile aerodynamics, and those of us who still work in the
company which he founded remember him with a mixture of awe and
affection.

David Nixon, President
Nielsen Engineering &
Research, Inc.
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PREFACE

In recent years the great many persons who have become actively
connected with missile science and engineering have had to rely princi-
pally on technical journals and papers for aerodynamic information.
The literature in missile aerodynamics is extensive and in many respects
complete, but an over-all view of the field is reserved to those few spe-
cialists familiar with the hundreds of excellent technical papers available.
However, a large group of persons who would find such an over-all view
useful in the performance of their duties cannot, for one reason or another,
review the numerous technical papers. It is principally for this group
that the present volume has been written. The book attempts to
present a rational and unified account of the principal results of missile
aerodynamics.

A missile is described by Webster as a weapon or object capable of
being thrown, hurled, or projected so as to strike a distant object. One
distinction between a missile and an airplane is that, unlike an airplane,
a missile is usually expendable in the accomplishment of its mission.
From a configurational I oint of view, the distinction is frequently made
that a missile is more slenc..r ,han an airplane and tends to possess smaller
wings in proportion to its body. These distinctions are, however, sub-
ject to many exceptions. In fact, the configurational distinctions
between missiles and airplanes seem to narrow as the operational speeds
increase. Therefore much of the missile aerodynamics contained, herein
will be directly applicable to airplanes.

Since this book draws on a large number of technical papers for much
of its content, it is important that the policy with regard to credit for
technical material be clear. The author would like to quote original
sources in all cases. Such a course of action is, however, impractical
because original sources are often impossible to ascertain, or not readily
available. Thus the references to technical papers herein are those most
convenient from the standpoints of availability or pedagogical usefulness,
or simply those most familiar to the author.

The book attempts to present a rational account, of the principal sub-
jects of missile aerodynamics. It further attempts to present adequate
mathematical treatment of the subjects for. use in design. The alterna-
tive approach, of compiling a handbook of missile design data, was not

ix



X PREFACE

attempted for several reasons in addition to the author's natural dis-
inclinations. First, the wide range of missile configurations and- their
continuous evolution render it difficult to specify design data of general
utility. Second, design data are often classilr-.d.

The author has been influenced in his -.? Ace of subject matter by con-
sideration of his special competencies. However, in the interests of com-
pleteness, he has included many subjects in which he has no particular
competence. Many subjects are treated extensively from a mathematical
point of view, but many other subjects of equal importance are either not
amenable to mathematical treatment or are imperfectly understood.
Nevertheless the author has chosen to treat such subjects qualitatively,
even though such treatment may not enhance the elegance of the book.
The emphasis in the main is on supersonic speeds, although much mate-
rial applicable to subsonic speeds is included. Such emphasis is con-
sistent with the facts that missiles fly mostly at supersonic speeds and
that many excellent books on subsonic aerodynamics are already avail-
able. Though certain subjects have been included in the interests of
completeness, no claim for completeness is made. The sin of omission is
considered preferable to inadequate treatment of more material.

Readers frequently wonder what motivates the author in his arrange-
ment of material. The first chapter is purely introductory in character,
and the second chapter collects together for convenient use many of the
results used repeatedly in subsequent chapters. The third chapter
treats the subject of slender-body theory which the author considers the
backbone of missile aerodynamics. Slender-body theory has the great
advantage that it is mathematically tractable for a very wide range of
missile configurations. In Chaps. 4 to 8, inclusive, an attempt is made
to present missile aerodynamics in an orderly building up of a missile
from its component parts, the body alone, the wing panels, the tail, and
the control surfaces. Since the aerodynamics of a tail behind the wings
of a missile depends on the flow field of the wing-body combination, such
flow fields are discussed in Chap. 6 before the discussion of wing-body-tail
combinations in Chap. 7. The final two chapters of the book treat the
important subjects of drag and stability derivatives. The nature of
aerodynamic drag makes desirable a separate chapter devoted to drag.
The chapter on stability derivatives attempts to treat all forces and
moments on a missile (other than drag) from a general and unified point
of view.

The author would like to acknowledge-the many contributions made
by others to the book. Professors Holt Ashley, J. C. Hunsaker, and
Arthur Bryson reviewed parts of the manuscript and made a number of
helpful suggestions. I should like to thank-those members of the staff of

the Ames Laboratory of the National Advisory Committee for Aeronautics,
Dean Chapman, Max Heaslet, Robert T. Jones, Morris Rubesin, Murray :1

... .i



PREFACE xi j
Tobak, and Milton Van Dyke, who willingly reviewed- those parts of the
book of particular interest to them. Also, the author would like to pay
tribute to those members of the staff of the 1- by 3-foot supersonic wind
tunnel branch with whom he has worked in the field of missile aerodynamics
for many years, and particularly to Wallace Davis, branch chief. These
co-workers of the-author include Wallace Davis, Elliott Katzen, Richard
Spahr, William Pitts, Leland Jorgensen, George Kaattari, Frederick
Goodwin, and others. The exacting job of preparing the final manuscript
was faithfully undertaken by Virginia Stalder. H. Guyford Stever has
been very kind in seeking out the book for his series and in lending general
encouragement and advice to the author. In conclusion, the author
would like to acknowledge his debt to the National Advisory Committee
for Aeronautics, in whose laboratory much of the knowledge in this book
was originated, and without whose cooperation this book would not have
been possible.

Jack N. Nielsen
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(Indicated by * in page margin of text)

ERROR CORRECTION

Page 5 Fig. 1-3 Angle a, measures Angle a, should
to Vo vector measure to

projection )f Vo
vector in t e x-z

plane

Page 5 Line 23 Table 1-1 Table 1-2

1 - 2/3BA 1 - (2/3BA)
Page 24 Eqn. (2-52) 1 - I/2BA 1 - (1/2BA)

Page 28 Eqn. (2-62) - a,
3rd line

Page 37 Eqn, -(3-12) S"() S'(e)
2nd line

Page 50 Eqn. (3-65) F'( ) d F(4) d

a2  -a2

Page 91 Fig. (4-19) so 3_
- coordinate next--to

F-inside circle-at
left

Page 95, Eqn, (4-91) ib
-in e exponents
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distribution pressure

Page 129 Line 5 left panel right panel
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CHAPTER 1

INTRODUCTION

One purpose of this chapter is to point out some of the differences
between airplanes and missiles by virtue of which missile aerodynamics
embraces subjects not formerly of great interest in airplane aerodynamics.
Another purpose is to collect in one place for ready reference many of the
symbols, definitions, and conventions used throughout the book. C -,

1-1. Missile Aerodynamics versus Airplane Aerodynamics
One of the principal differences between missiles and airplanes is that X f

the former are usually expendable, and, consequently are usually unin-
habited. For this reason increased ranges of speed, altitude, and
maneuvering accelerations have been opened up to missile designers, and
these increased ranges have brought with them new aerodynamic prob-
lems. For instance, the higher allowable altitudes ,and maneuvering
accelerations permit operation in the nonlinear range of high angles of
attack. A missile may be ground-launched or air-launched and in conse-
quence can undergo large longitudinal accelerations, can utilize very high
wing loadings, and can dispense with landing gear. In the absence of a
pilot the missile can sometimes be permitted to roll and thereby to intro-
duce new dynamic stability phenomena. The problem of guiding the
missile without a pilot introduces considerable complexity into the
missile guidance system. The combination of an automatic guidance
system and the air frame acting together introduces problems in btability
and control not previously encountered. Many misgiles tend to be
slender, and many utilize more than the usual two wing panels. These -}
trends have brought about the importance of slender-body theory and
cruciform aerodynamics for missiles.

1-2. Classification of Missiles
Missiles can be classified on the basis of points of launching and

impact, type of guidancesystem, trajectory, propulsive system, trim and
control device, etc. An important classification on the basis of points of
launching and impact is given in Table 1-1.

Another source of distinction among missiles is the guidance system.
In a command system the missile and the target are continuously tracked

1,



2 MISSILE AERODYNAMICS

from one or more vantage points, and the necessary path for the missile
to intercept the target is computed and relayed to the missile by some
means such as radio. A beam-riding missile contains a guidance s) stem
to constrain it to a beam. The beam is usually a radar illuminating the
target so that, if the missile stays in the beam, it will move toward the
target. A homin4g missile has a seeker, which sees the target and gives
the necessary directions to the missile to intercept the target. The
homing missile can be subdivided into classes having active, semiactive,
and passive guidance systems. In the active class the missile illuminates
the target and receives the reflected signals. In the semiactive class the
missile receives reflected signals from a target illuminated by means
external to the missile. The passive type of guidance system depends on a
receiver in the missile sensitive to the radiation of the target itself.

TABLE 1-1. CLASSIFICATION OF MISSILES

AAM Air-to-air missile
ASM Air-to-surface missile
AUM Air-to-underwater missile
SAM Surface-to-air missile
SSM Surface-to-surface missile

UUM Underwater-to-underwater missile

Another method of classifying missiles is with regard to the type of
trajectory taken by the missile. A ballistic missile follows the usual
ballistic trajectory of a hurled object. A glide missile is launched at a
steep angle to an altitude depending on the range, and then glides down
on the target. A skip missile is launched to an altitude where the-atmos-
phere is very rare, and then skips along on the atmospheric shell.

On the basis of propulsive systems missiles fall into the categories of
turbojet, ram-jet, rocket, etc. If the missile receives a short burst of power
that rapidly accelerates it to top speed and then glides to its target, it is a
boost-glide missile. Sometimes a missile is termed single-stage, double-
stage, etc., depending on the number of stages of its propulsive system.

Further differentiation among missiles can be made on the basis of trim
and control devices. A canard missile has a small forward lifting surface
that can be used for either trim or control similar to a tail-first airplane.
A missile controlled by deflecting the wing surfaces is termed a wing-
control missile, and one controlled by deflecting the tail surfaces is termed
a tail-control missile. It is to be noted that these definitions depend on
which set of lifting surfaces is taken as the wing and which is taken as the
tail. For missiles with two sets of lifting surfaces, we will specify the
wing-to be the main lifting surfaces and the tail to be the balancing sur-
faces, a distinction maintained throughout the book. In a cruciform
missile, sets of controls at right angles permit the missile to turn immedi-

ately in any plane without the necessity of its banking. On the other

. . . . . ... .. . . ... . . . . . .I



INTRODUCTION

hand a bank-to-turn missile, like an airplane, banks into the turn to bring
the normal acceleration vector as close to the vertical plane of symmetry
as possible.

1-3. Axes; Angle of Bank and Included Angle

Of the two general systems of axes used in the present book, the second
system does not appear until the final chapter. The first system, shortly
to be described, is one well adapted for use with the theory of complex
variables and, as such, is useful in slender-body theory. The second axis
system is the NACA standard used in such fields as stability derivatives
and dynamic stability. It is described in detail in the final chapter. It
would simplify matters if one set of axes were used in place of the two
sets. Consideration was given to defining such a compromise set of
axes, but the idea was discarded because the
net effect would probably be to add another Z
system, where too many systems already
exist. Also, a single system of axes repre-
sents too great a departure from usage in
the technical literature.

The basic set of axes used in the first nire
chapters is a set of body axes x, y, and z fixed
in the missile with minor notational differ-
ences for various missile positions. The x
axis is positive rearward and coincides with
the longitudinal missile axis. The y axis is x

' FIMG. 1-1. Body axes.
positive to the right, facing forward, and
lies in the horizontal plane of symmetry when one exists. The z axis is
positive vertically upward and lies in the vertical plane of symmetry if one
exists. The x, y, and z axes shown in Fig. 1-1 form a right-handed system.

The body axes x, y, z take on all the possible orientations a missile can
assume in a uniform air stream. The angles which conveniently specify
the orientation of a missile with respect to its flight direction depend on
the use to which such angles are to be put. For the purposes of this

book a set of angles a, and o are convenient. Consider a missile mounted
in a wind tunnel on a sting coincident with the prolongation of its longi-
tudinal axis. Let the missile be aligned parallel to the wind velocity
with the wing panels in the zero bank attitude. Denote the body axes
in this initial position by :, g, and 2. Now rotate .(pitch) the missile
about the g axis by an angle a, as shown in Fig. 1-2, so that C and 2Joccupy the positions x' and z'. The angle a, will be termed the included
angle and is the angle included between the missile's longitudinal axisand
the free-stream velocity. Now let the missile be rotated in a clockwise
direction facing forward about the x' axis so that y' and z' go into y and z.
The axes are related by the following equations:

-~ ,~,v . - t .



4 MISSILE AERODYNAMICS

X = COS a,: - sin c

y' 1 (1-1)
z' = xsin a, + cos a,

x = COS a, - 2 sin a,

V = cos p - X sin a. sin p - 2 cos asin V (1-2)
z'= g sin ' + X sin , cos " cos a, cos

From Eq. (1-2) the direction cosines between the x, g, 2 and the x, y, z
axes can be readily found (Table 1-2). It is important to note that the

I 4

(a) (b)
Mao. 1-2. Axis conventions for pitch and bank. (a) Pitch about p; (b) bank about x'.

angle a. must be applied to the missile before p is applied for the above
direction cosines to be valid. Thus, the pitch and bank operations are
not commutative. In particular, if the missile is first banked about t and

~~TABLE 1-2. DIRECTION COSINES or BODY AXES FOR

~COMBINED ot¢ AND p DISPLACEMENTS

X'

ZV COS ae 0 - sin ae.

V - Bill of, sin V COS -Cos cf, sin 'P
Z sin a cos i a sin ( ItC acou t op(

then pitched about p, the t axis will remain perpendicular to the air
stream. In other words, the missile will remain in a position of zero

sideslip.
1-4. Angles of Attack and Sideslip

The angles of attack and sideslip are defined here as purely kinematic
quantities depending only on velocity ratios. As such, they measure

- . ___________ ___ ____ ___

thenpithed bo~t ~ the~ ais ill eman pepenicuar t th ai
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velocity components along the body axes of the missile. Let the air-

stream velocity relative to the missile center of gravity be V0 with corn-
ponents u, v, and w along x, y, and z, respectively. As defined, u, v, and
tw are flow velocities, and -u, -v, and -w are velocities of the center of
gravity with respect to the air stream.
The angles of attack and sideslip have Z

been defined in at least three ways.
The small angle definitions are

W~ #- v (1-3)

The sine definitions are -- -

sia -V
sina, = ~- sin l, - (1-4)

The tangent definitions are

tan a tan ----- (1-5) FIG. 1-3. Angles of attack and sideslip.

The subscripts s and t are used to differentiate between the sine and the
tangent definitions. A graphic interpretation of the angles a,, ,, at, and
Pt is shown in Fig. 1-3. Note that a positive sideslip anglc. occurs
when the air stream approaches from the right facing forward. For
small angles, the angles of attack and sideslip do not depend on which

definition is used. For large angles, it is necessary to know which defini-
tions have been adopted. Frequently, the sine definition is used for one
quantity and the tangent definition for another.

It is a simple matter to relate the angles of attack and sideslip to the
* included angle and angle of bank. With the aid of Table 1-1, we have

u = Vo cos (xX) = Vo cos a,
v = Vo cos (x,y) = - Vo sin a, sin e (1-6)

t = Vo cos (t,z) = Vo sin a, cos P

For given values, of a. and 9, the values of a, and fl, are expressed by

sin a, = sin a, cos 9 (1-7)
sin p, = sin a, sin p

Conversely, the values of a. and 9 necessary to yield a. and P3, are given by
sin' a, sin2 a, + sin' 1,

Ssin o (1-8)tan V tia----
~sin a,

For the tangent definitions, a set of relationships exist similar to Eqs.

(1-7) and (1-8):

J I -
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:• tan at = tan a, cos g 19
tan flt = tan a, sin

tan2-a. = tan2 at + tan2 P,
tan p (1-10)tan q' =tan at

For small values of the included angle a., both Eqs. (1-7) and (1-9) yield

ac o' (1-11)
= a. sino

This relationship has wide use in cruciform aerodynamics. It does not
matter what the angle g is, so long as a, is small. It is noteworthy that
Eqs. (1-8) and (1-10) would be used to set a sting-mounted model in a
wind tunnel to previously selected values of a,, ft,, or of at, Pt.

Illustrative Example

Find the valueof a,, ., at, and Ot for an included angle of 300 and a bank
angle of 250.

From Eq. (1-')

sin a, = sin a, cos v = 0.500(0.906) = 0.453
a, = 270

sin ft, = sin a, sin - (0.500)(0.423) = 0.212
= 12.3*

From Eq. (1-9)

tan-at = tan a, cos v = (0.5774)(0.906) = 0.523
at = 27:6'

tan-fli = tan a. sin = (0.5774)(0.423) = 0.244
Pt = 13.70

1-5. Glossary of Special Terms

Many special terms occur repeatedly in missile aerodynamics. Some
of these terms are now listed for ready reference.

B(dy axes: a set of cartesian axes fixed in the missile and parallel to the
axes of symmetry of the missile if such symmetry axes exist

Crossfqow plane: a plane normal-to the free-stream velocity
Cruciform wing: four similar wing panels -mounted together at a com-

mon chord and displaced one from the next by ir/ 2 radians of arc
Fineness ratio: ratio of body length to body diameter (calibers)
Horizontal.plane of symmetry: the horizontal plane in which the lower

half of the missile is the mirror image of the upper half
Included angle: angle between free-stream velocity and missile longi-

tudinal axis

-----
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Interdigitation angle: angle between the plane of a lifting surface and
the plane of another tandem lifting.surface

Normal plane: a plane normal to the missile longitudinal axis
Subsonic leading edge: a leading edge such that the component of the

free-stream Mach number normal to the edge -is less than one
Supersonic leading edge: a leading edge such t;hatthe component of the

free-stream Mach number normal-to the edge is-greater than one
Symmetrical wing: a wing possessing a horizontal plane of symmetry
Tangent ogive: a missile nose having constant radius of curvature in all

planes through the longitudinal axis from the apex to the circular cylinder
to which it is tangent

Trefftz plane: a fictitious cros'fiow plane infinitely far behind a missile

or lifting surface to which tho trailing vortex system extends without
viscous dissipation

Vertical plane of symmetry: the vertical plane in which the left half of
the missile is the mirror image of the right half

Wing panels: those parts of the main missile lifting surfaces exterior to
the body

SYMBOLS

Vo free-stream velocity
x, y, Z missile body axes; a,, 0, 9 $ 0

T, y, missile body axes; a, = 0, = 0-
X/, .y', z' missile body axes; a, $ 0, = 0

angle of attack
ac included angle

angle of sideslip
a,,P t  sine definitions of angles of attack and sideslip
at, Pt tangent definitions of angles of attack and sideslip

angle of bank

REFERNCIE

1. Warren, 0. H. E.: The Definitions of tile Angles of Incidence and of Sideslip,
RAE Tech. Note Aero. 2178, August, 1952.
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CHAPTER 2

SOME FORMULAS COMMONLY USED
IN MISSILE AERODYNAMICS

The primary purpose of this chapter is to collect together for ready
reference certain formulas of theoretical aerodynamics and mathematics
commonly used in missile aerodynamics. These formulas are derived in
detail and discussed in other works, and their rederivations here will not
be attempted. Since repeated use is made of the formulas throughout
the book, they are collected together in a single chapter for convenience,
and to obviate repeated explanation of the formulas and notation. The
formulas include the potential equation and Bernoulli's equation in their
nonlinear and linearized forms. A listing and classification of the
principal theories used in the book is provided. Some common aero-
dynamic formulas are included for line pressure sources, rectangular and
triangular wings, and simple sweep theory. With regard to mathemat-
ical formulas, a list is given of conformal mappings used in the book,
together with a list of the complex potentials of the flows to be used.
The terminology and notation of elliptic integrals is also included.

2-1. Nonlinear Potential Equation

The common partial differential equation underlying the velocity fields
of nearly all flows considered in this book is the potential equation. The
potential equation is the partial differential equation for the velocity
potential 0. The velocity potential is a scalar function of position and
time, from which the flow velocities can be obtained by differentiation.
For a discussion of the velocity potential, the reader is referred to Liep-
mann and Puckett.'* A number of conditions determine the actual form
of the potential equation used in any particular case. Some of -these
conditions are (1) whether the fluid is compressible or incompressible,
(2) the coordinate system used, (3) the velocity of the coordinate system
with respect to the fluid far away, (4) whether the equation is linearized
or retained in its nonlinear form, and (5) the basic flow about which the
equationis linearized.

For the first case consider a compressible fluid stationary at infinity.
Let the cartesian axes , il, t (Fig. 2-1) be a set of axes fixed in the fluid.
rThe pressure and density for the compressible fluid are related through

* Superior numbers refer to items in the bibliographies at the ends of chapters.

8
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the isentropic law

P P (2 41)

,' being the ratio of the specific heats.
Let 4)be the potential function. The full nonlinear equation2 ,for 4' is

[.02 - -1 + ++ D±qv) 4' +

' + + + +++ -'4 -44 )
+ 4),4)q.) + 2 ()P4'q , + 4'A ) (22)

The symbol r represents time and c,. is the speed of sound in the undis-
turbed air at o, Equation (2-2) can be considered as the nonlinear
equation governing the pattern of the flow about a missile flying through
still air as it would appear to an observer fixed on the ground. In many

" Axes fixed
1" in fluid

Axes fixed '1
in missile

FllghtPath-

VI

FIG. 2-1. Axes fixed in fluid and axes fixed in missile for uniform translation.

cases of interest in the theory of missile aerodynamics, the fluid velocity
at infinity can be considered parallel anduniform, and t' missile can be
considered stationary with respect to the observer. It is now shown that
the form of Eq. (2-2) is unchanged in this new frame of reference.

With reference to Fig. 2-1, let X, g, and 2 be axes fixed in the missile
at time t with X parallel to the uniform velocity V0 of the fluid at infinity
as seen from the missile center of gravity. Also, choose the axis of the

,1,1 ',T system parallel to X. To obtain the potential equation for the
x, g, 2 axes with the fluid in uniform motion at infinity, we first convert
the flow as seen by 9; gi'ound observer from the , system to the
x,,zt system with the fluid still stationary at infinity. Then we super-
impose a velocity Vo along the positive axis to obtain-the flow we seek.
The transformation equationc are

~+ Voj

'~-:~(2-3)

t=i

.,-1.
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A -new equation for - is then obtained in terms t, , , t. Superimposing
the velocity Vo aiong the positive X axis changes the flow pattern and
changes the potential P into the new potential 0 in accordance with

j = vo + I (2-'

The operations when carried out yield for 0

Uo 2 + °2 - (-I - 1) : + €c+ 02 + ±@

+-2(0s€v4€ + 44st€ i + €OvOxOP) + 2(qS€. , + €OpOpt + Ozzi,) (2-5)

A comparison of Eqs. (2-2) and (2-5) reveals the additional term
(y- 1) Vo2/2 in the latter equation. A simple physical interpretation of
this difference can be given. In Eq. (2-2), c, is the speed of sound of the
fluid at rest with respect to the ,,4 system. In the ,, system, c, now
corresponds to the speed of sound in fluid with velocity V0. The speed of
sound in fluid at rest in the :,,2 system, denoted by cg, is given by

c 2  + + 2 V0 2 (2-6)

With this physical interpretation, Eq. (2-5) now is completely similar to
Eq. (2-2). In fact, the first factor in each equation is nothing more than
the square of the local speed of sound.

2-2. Linearization of:Potential Equation

To linearize the potential equation, Eq. (2-5), we must reduce all terms
greater than first order in the product of the potential and its derivatives
to terms of first order or less. At-the onset it should be stated that there
are a number of ways of carrying out the linearization, and the correct
way, if any, depends on the problem-at hand. In any particular case the
solution to a linearized problem should be examined to see if it fulfills the
assumptions of the linearization. A particular way of linearizing the
potential equation, which has proved particularly useful to the aero-
dynamicist, is to consider small changes in the velocity field from a uni-
form flow parallel to'the B axis of speed Vo. The velocity components
are then

0Z= Vo+ 4 = 0 2= (2-7)

where a, 0, and fv are small perturbation velocities. With the possible
exceptiori of limited regions such as stagnation regions, our first assump-
tion is that the perturbation velocities are small compared to Vo so that

a D e = o(e << 1 (2-8)

V- TO-T



FORMULAS COMMONLY USED IN MISSILE AERODYNAMICS 11

In this equation the symbol 0(c) stands for "of the order of magnitude of
f." In contrast to its more precise mathematical meaning, the symbol
has the approximate physical meaning in the present connection that the
velocity ratios have numerical values of a magnitude e much less than
unity. In the neighborhoods where the perturbation velocities are large,
the solutions of the linear equation-for small perturbation velocities can-

not be accurate, but, if these regions are limited in extent and number, it

can be hoped that the solutions will be representative of the flow in the
large.

In connection with Eq. (2-8) we have also assumed that the perturba-
tion velocities are of comparable magnitudes. If, as is frequently the
case, the lateral extent of the region of influence of the body on the
potential f eld is -approximately the same length as the longitudinal
extent, then, on the average, the gradients of the potential will be the

same in all directions, and 4, V, and 7-v will be of comparable magnitude.
The validity of this assumption must be adjudged for the particular
problem at hand. The velocity components are then of orders

411 = V 0[1 + 0(E)] O = O(EVo) Oj = 0(6Vo) (2-9)

If the lateral and longitudinal extents of the region of influence of the
body on the potential field are characterized by length L, the second

spatial derivatives of the potential are of order

O~ey O~J' Og, DE, ZZ 0 JEV0(2-10)

We now need some measure -of the orders of magnitude of the timederivatives of the potential. First, since

- V4 = f fd: (2-11)

we obtain
-Vo = 0(eVoL ) (2-12)

Now consider the body to be undergoing some ,unsteady motion such as

periodic oscillations characterized by frequency n per unit time. The
perturbation potential will change 2n times per unit time so that

O = O(eVoLn)

. Let us introduce the number of cycles per body length of travel

x -(2-13)

Then, in terms of this frequency:parameter, the time derivatives are of
orders of magnitude

l%
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= O(exV02)
S( )(2-14)

The foregoing results permit us readily to determine the order of magni-
tude of all terms in Eq. (2-5) and to discard those of second and third
order in e. The resulting equation will be valid for all values of x not
greater than order of magnitude unity or, specifically, if

xe << 1 (2-15)
The linearized equation is

(c 2 - 1 V0 2) V24 = Ou + V °2l4g + 2Voogu (2-16)

In terms of the free-stream speed of sound

Co2 = C-2  1 V 0 2
2

and the free-stream Mach number

M_ - Vo (2-17)
Co

Equation (2-16) becomes

Ol.e - M0
2) + Ogg + 011 Ott + 2 Olt (2-18)

2 -- Co

This equation is the essential equation of linear aerodynamics.

2-3. Bernoulli's Equation; Pressure Coefficient as a Power Series in
Velocity Components

Bernoulli's equation for the compressible unsteady potential flow of a
fluid whose density -is a function only of the pressure is in the ,7,tT
system:

dp + +D _- C(-) -(2-19)

where q2  Pr2 + ,,12 + br2

Some interpretation of the above form of Bernoulli's equation is interest-
ing. In that form, it holds for -each point -in the unsteady flow -for all-
times, The function C has the same value at all points in the flow at any
particular time, but its value can change with time. However, if the
flow at any point (such as at infinity) does not-change with time, then C is
constant with time also. Bernoulli's equation can bethought oflas a-rela-
tionship between the pressure field- of -the flow and the velocity -field.
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Thus, if - is known for a given flow, the pressure can be calculated-from

Eq. (2-19). For a steady flow with the pressure and density related by
Eq. (2-1), Bernoulli's equation becomes

qyP 2 PR +P q2

' + 2 +--+= (2-20)-l 2 -'-I R 2

The quantities with no subscripts are for any general point, while those

with subscripts R refer to quantities at some reference condition.

In linearized theory, Bernoulli's equation is generally used to-obtain an

expression for the pressure coefficient in terms of the velocity components

IV, i along the o, g, 2 axes. For this purpose we define the pressure

coefficient P in terms of certain reference quantities

P - pieP P - (2-21)

where pR, pR, and VR are usually taken. as the pressure, density, and
velocity of the free stream (po,po, Vo) in the ..,g,2,t coordinate system or

*p0, p, Vo in the , system for complete- analogy -between the two
systems. To obtain the power series-for P in velocity components let us
perform the expansion in the , system and then transform to the

x,y,z,t system. With the subscript oo referring to the condition at co in
the , system, integration of Eq. (2-19) yields

-P+ 2+ ' p- (2-22)ly-- p 2 ' - 1 P.o

where 4) and q are taken as zero at infinity. With the help of Eq. (2-1)

and the Mach number relationship

M.-- V (2-23)
Coo

we can put Eq. (2-22) into the following form after some manipulation:

',2 y~ j yI.ii
P-M 2 = 1 c - 1 \2 / - 1 (2-24)

Expansion of Eq. (2-24) yields the power series
__ - -2 q1/2 + I, (q2/2 + (Py

PCCP-2 = - 2 + M002 \__o

~2pVo +MC 40, (j2+ 4,,
2 + (2-25)+ Mc0 ,-

where 0 designates -order of magnitude. This-series gives the pressure
coefficient in powers of the deiivatives of -1 in the , system.

To convert Eq. (2-25) to the Xg,2,1 system, we note that the pressure
f coefficient has the same value and, same physical significance in both sys-

t
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tems since it is based on conditions at infinity. The only difference is the
notational one that the subscript o for p,, p., and c. must now be
changed to 0. In particular M. is now M0. With these notational
changes, we now introduce the potential 0 in the x,y,z,t system which in
accordance with Eqs. (2-3) and (2-4) is

,,,. -- ,( , - V 0, ,, t) - Vot (2-26)

For the derivatives of b we thus obtain j
,)= -, - Vo

4P1 = = (102 - Vo)Vo + ., (2-27)

If we further let f, 0, and ?b be the perturbation velocities parallel to the
t, 9, and 2 axes, we have

'D = 2V0 + - (2-28)

We thus interpret Eq. (2-25) as

P= P-P - g2 /U + 02 + WI + )
p0Vo 2 = 2 aVo +

M o2 [a 2 "+t  V2 +3  712  )2

+ 2 + aVo+ + + -

so that as a final result we have

2ft 21 4a2(1110
2 - 1) -V 2 - 12

P = +o V o
V0  V0  V02

M0
2

+ -VO- (Pt + 29Vo)OP + terms of third order in e (2-29)

Even though the potential equation is linearized, the square terms in

Eq. (2-29) can be significant as, for instance, in slender-body theory.

24. Classification of Various Theories Used in Succeeding Chapters

Results from a number of aerodynamic theories are utilized in succeed-
ing chapters. The theories to be used differ in a number of respects as~follows:

(1) Potential or nonpotential
(2) Mach-number range of applicability
(3) Dimensionality of flow; i.e., two-dimensional, axially symmetric
(4) Shape of, physical boundaries considered

All the theories we will consider are potential theories with the exception
of the Newtonian theory [Eq. (9-50)] and the viscous crossfiow theory
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(See. 4-6). With regard to the Mach-number range of applicability we
will be concerned principally with theories valid in the supersonic speed

range, although various of these theories are valid at subsonic speeds also.

We will be' interested in theories that apply to two-dimensional flows,
axially symmetric flows, and three-dimensional flows. As for the shape
of the physical boundaries, such shapes as planar surfaces, bodies of

revolution, airfoils, etc., are encountered in classifying the various
theories. Only steady flows are considered.

TABLE 2-1. CLASSIFICATION OF AERODYNAMIC THEORIES USED IN TExT

Flow Typical Speed
Theory Potential dimensionality shapes range Class

Ackeret Yes Two-dimensional Airfoils M > 1 A
Busemann Yes Two-dimensional Airfoils M > 1 A
Shock-expansion Yes Two-dimensional Airfoils M > 1 A
Method of char- Yes Two-dimensional, Airfoils and M > 1 A

acteristics axially symmetric bodies of revo-
lution

Strip Usually Two-dimensional Three-dimen- Any M B
sional

Simple sweep Usually Two-dimensional Swept wing and Any M B
swept cylinders

Supersonic wing Yes Three-dimensional Wings M > 1 C
Conical flow Yes Three-dimeisional Wings, cones A > 1 C

usually
Supersonic Yes Three-dimensional Wings built of M > 1 C

lifting line horseshoe
vortices

Quasi-cylinder Yes Three-dimensional Quasi-cylinders M > 1 C
usually

Slender body Yes Three-dimensional "Slender" bodies Any M C
Newtonian No Three-dimensional Any shape Any M D

impact

Viscous crossflow No Three-dimensional Slender bodies Any il D

A listing of the theories to be considered is given in Table 2-1. The
theories are classified in classes A, B, C, and D. The first three classes
are essentially potential theories but D is not. Class A is a class of

essentially two-dimensional theories; class B is the class of two-dimen-
sional theories applied to three-dimensional shapes, and class C is a class
of essentially three-dimensional theories.

The theories of class A are arranged in order of increasing exactitude.
The first three theories have been treated in a form suitable for engineer-
ing calculations.' The Ackeret theory embraces solutions of Eq. (2-18)
specialized to two dimensions

(M02 - 1)of, - O = 0 (2-30)

W1
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and gives pressure coefficients linear in the flow-deflection angle. The
Busemann theory is an application of the equations of oblique shock waves
and Prandtl-Meyer flow expanded in a power series in the flow deflection
to terms of the second degree. The actual formulas for the pressure
coefficient are given in Sec. 8-6. The use of the equations of oblique
shock waves and of Prandtl-Meyer flow in their full accuracy is termed
shock-expansion theory. Calculation by the method of shock-expansion
theory can conveniently be made by means of tables and charts.3' 4 As
described by Sauer,5 the method of characteristics is basically a two-
dimensional graphical method for solving two-dimensional or axially
symmetric potential flows. Though its use in three dimensions is not pre-
cluded on theoretical grounds, the graphical procedures are not con-
venient to carry out. In many instances the graphical procedures can be
adapted to automatic computing techniques. In such cases the method

is not too time-consuming for common en-
- gineering use. Not the least of its many

uses is as io standard of comparison for less
accurate but more rapid methods, i.e., Sec.

-9-4.

The theories of class B are two-dimen-
sional methods applied directly to three-

A - A dimensional shapes. In strip theory any
three-dimensional shape is sliced into strips
by a series of parallel planes usually in the
streamwise direction (Fig. 2-2). The pri-

mary assumption is that the flow in each
strip is two-dimcnsionl with no interaction

Section AA between strips. To each strip is then ap-
Fio. 2-2. Strip theory, plied any two-dimensional theory or even

two-dimensional data. Simple sweep theory is a special form of strip
theory applied normal to the leading edge of swept wings or cylinders.
It is considered in See. 2-7.

With the exception of slender-body theory, the theories of class C all
involve three independent space coordinates in their partial differential
equations. (Conical flow theory can be put into a form with only two
indepsndent variables.) For slender-body theory, the third coordinate,
streamwise distance, is manifest in the boundary conditions rather than
in the partial differential equation. Supersonic wing theory is based on
the linearized steady potential flow equation Eq. (2-18).

(M0 - 1) Olt - -Og if = 0 (2-31)

and is discussed by Jones and Cohen.7 In supersonic wing theory, the
boundary conditions are applied in the z = 0 plane, the plane of the wing.
Solutions are known for many different wing planforms for both lifting
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and nonlifting wings. Supersonic wing theory for lifting surfaces (no
thickness) is termed supersonic lafting-surface theory, and some results for
triangular and rectangular supersonic lifting surfaces are included in
Sec. 2-6. Conicalflow theory is a special form of linearized theory applica-
ble to problems in which the flow quantities are constant along any line
emanating from an apex. The supersonic flow over a cone or a triangular
lifting surface are well-known examples of conical flow. The 'Jones's line
pressure source described in Sec. 2-5 is another example. Lagerstrom8

has listed a large number of conical flows. The utility of conical flow
theory lies in the large number of wing flow fields that can be constructed
by superimposing conical flow fields with different apex positions.

The counterpart at supersonic speeds of the Prandtl lifting-line theory
will be termed supersonic lifting-line theory. The essential difference is
that supersonic horseshoe vortices are used (Sec. 6-3) instead of subsonic
horseshoe vortices. In this method, the lifting surface is replaced by one
or more horseshoe vortices. In the process, the details of the flow in the
vicinity of the wing are lost, but simplicity is gained in trying to calculate
the flow field at distances remote from the wing. The calculation of
downwash and sidewash velocities at distances remote from the wing is
tractable only in a few- cases with the full accuracy of supersonic wing
theory. Again in the calculation of the flow field associated with wing-
body combinations, the use of lifting-line theory is tractable where the
full linearized theory is not. Quasi-cylindrical theory at supersonic
speeds is analogous to supersonic wing theory in that both utilize the same
partial differential equations, but in the former the boundary conditions
are applied on a cylindrical surface, rather than the z = 0 plane as in the
latter. In this connection the cylinder is any closed surface generated by
a line moving parallel to a given line. Many lifting surfaces can be so
generated. Herein we confine our applications of quasi-cylindrical
theory to cylinders that are essentially circular.'

The remaining theory of class C (slender-body theory, about which we
will have much to say) is particularly adapted to slender bodies such as
many missiles. This theory, described in detail in Chap. 3, is based on
solutions to Laplace's equations in two dimensions with the streamwise
coordinate being manifest through the boundary conditions. The
occurrence of Laplace's equation rendeits slender-body theory particularly
amenable to mathematical treatment and makes its application to three-
dimensional bodies tractable in many cases of interest.- The theories of
class D are not potential theories and are discussed in Secs. 4-6 and 9-5.

2-5. Line Pressure Source

As an example of a conical flow solution, we have the line pressure
source of R. T. Jones,"0 which i' useful in problems of controls, drag, etc.

The general features of the flow are readily shown. Consider the infinite I
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triangular cone shown in Fig. 2-3. Such a cone is the boundary formed
by placing a line pressure source along the leading edge. The pressure
coefficient for a subsonic leading edge is

28 cosh - 1P = RP
r(tan2 A - B2)

tan A/B - B tan v
= [(tan A tan v - 1)2 + (z/x) 2(tan2 A - B2)13 (2-32)

and for a supersonic leading edge is

2 cos - '(3
-r(B2  tan2 A)' (2-33)

Here the designation RP denotes the real part of the inverse cosine or
inverse hyperbolic cosine. The equations show that the pressure coeffi-
cients depend- only on tan v, y/x and z/x quantities, which are constant

along rays from the origin. The
pressure field is therefore conical.
The wedge and pressure field are
symmetrical above and below the

- Mcl z = 0 plane.
The pressure field shown in Fig.

2-4 is that for a wedge with a sub-
sonic leading edge. The pressure
coefficient is zero along the left
Mach line, increasing as we move
from left to right. At the leading

X edge, the pressure coefficient is the-
Fro. 2-3. Infinite wedge or infinite trian- oretically infinite. To the right of
gular cone. the leading edge, the pressure again

falls from infinity to zero at the Mach line. The infinity can be viewed as
high positive pressure corresponding to stagnation pressure. A wedge
with a supersonic leading edge has a conical flow field of the type shown
in Fig. 2-5. The distinctive feature is the region of constant pressure
between the leading edge and the Mach line. By superimposing line pres-
sure sources and sinks, a number of symmetrical wings of widely varying

*planform can be built up.

2-6. Aerodynamic Characteristics of Rectangular and Triangular Lifting
Surfaces on the Basis of Supersonic Wing Theory

In contrast to the symmetrical pressure fields of symmetrical wings at
zero angle of attack, the pressure fields of lifting surfaces are asymmetri-
cal; that is, the pressure changes sign between the upper and lower sur-
faces. Since we will deal extensively with lifting pressure fields, it is
desirable to set up notation and terminology for loading coefficient, span

_!
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Fia. 2-4. Thickness pressure distribution on. infinite wedge with sub3onic leading edge
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tan- ' 3 / 2

- Mach inre

-,.00

Fia. 2-5. Thickness pressure distribution on-infinite wedge with supersonic leading
edge. .
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loading, etc. By the loading coefficient of a wing or body, we mean the
difference between the pressure coefficient at corresponding points on the
upper and lower surfaces.

AP = P+ - P- (2-34)

The superscript plus (+) refers to the impact pressures of the lower
surface, while minus (-) refers to the suction pressures of the upper
surface. The distribution of AP over the surface is called the loading dis-
tribution. The section lift coefficient is the average over the local chord of
the loading coefficient

~ tecl = if AP dx (2-35)

The span-load distribution is the distribution across the wing span of the
product of the local chord and the aection lift coefficient cc,. The center
of pressure is the position at which- all the lift of a wing panel can be con-

centrated for the purpose of calcu-
lating moments.

Let us now summarize some of
the results of supersonic wing the-
ory for =Iriangular wings. For tri-

- Mach line angular lifting surfaces with subsonicleading edges (Fig. 2-6) the lift-curve

slope has been determined by
Stewart," to be

dCOL 2r tan w

dcx E(1 - B' tan 2 CO) 23)

X where E is the complete elliptic in-
tegral of the second kind of modu-

Fie. 2-6. Notation for triangular wings. lus (1 - B 2 tan2 W) (see Sec. 2-9).
The lifting pressure distribution is constant along rays from the apex

AP' ( 4 tanc

tan2 v/tan ' w) E (2-37)

The lifting pressure field- is conical with respect to the apex, and the
pressures are infinite at the leading edges. The span-load distribution is
elliptical for triangular wings with subsonic leading edges.

- (1 tan2 A V
c (cc) 0\1 t (2-38)

The span loading at the root chord (cc,)o is

(cc)= t (239)

I -
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Because the flow is conical, each triangular element from the apex has its
center of pressure at two-thirds the distance from the apex to the base.
All triangular elements have their center of pressure at the two-thirds
root-chord axial distance and so, therefore, does the wing. The lateral
position of the center of pressure for an elliptical span loading is at the
4/3ir semispan position.

The triangular lifting surface with supersonic leading edges also has
simple aerodynamic properties. First, its lift-curve slope is the same as
that of an infinite two-dimensional airfoil

dOL _4
- _(2-40)

The loading distribution is conical and can be calculated directly from the
results for line pressure sources in the preceding section since the upper
and lower surfaces are independent. The* sloper is simply replaced by a
in Eq. (2-33). On this basis with a line source along each leading edge
we have for the wing loading

4a ctn IB - B tan v
AP = ir(B 2 - ctn2 W) cs-, - tan

+ e..- ctn w/B + B tan v) (2-41)cos- 1 + tan v/tan w

Equation (2-41) yields a constant loading in the region between the Mach
lines and the leading edges

4a (2-42)
(B2 - c n2

For the region between the Mach lines, manipulation of Eq. (2-41) yields

AR4a [1 ein )B ctn2 A)tan2 V)AP - (B 2 - ctn2 W) - ir sin-' I. tan2- n2-
(2-43)

The span loading in this case is not elliptical as for the lifting surface with
subsonic leading edges but has a linear variation over the outboard sec-
tion and a different variation -between the Mach lines. For the linear
part, we have with reference to Fig. 2-7

- 4a(sm - y) ctn w sm < IYI s. (2-44)(B2 - ctn2 &) B tan w

and, over the inboard section,12

4a -1 (5m y) sin - yB 2 tan 2 t - s,
(B2 tan W - 1) s [ r (sm y)B tan&

8m+ .& yB - tan2 ( + sm 0", (2-45)
s v (s_. +y)B tan. 0co-y (2-4c )

-j -~------------- -- ~---
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The center of pressure is still at thetwo-thirds root-chord axial location
since the lifting pressure field is conical.

Turning now to the aerodynamic characteristics of rectangular lifting
surfaces at supersonic speeds, we must differentiate several different cases,
depending on the effective aspect ratio BA. For BA > 2 the tip Mach
waves do not intersect, for 1 < BA < 2 the tip Mach waves intersect

Ztan-- M2-2

-1..0

FG. 2-7. Loading distribution along trailing edge, and span-load distribution for
triangular wing with supersonic leading edges.

each other but do not intersect the wing tips, and for Y < BA < I the
tip Mach waves intersect the wing tips only once. The lift-curve slope
for cases 1 and 2 (Fig. 2-8) has the same analytical form.

dCL _41

dB- BA>1 (2-46)

For case 3 the lift-curve slope is

[- 2 - sin - ' BA + (BA -2) cosh- 1
da ArB BA) BA

For-cases 1, 2, and 3, characteristic regions I, If, and III are specified.
The analytic form of the loading is different in each of the three regions.
In region I there-is no influence of the wing tips, and the loading coeffi-
cient has the two-dimensional value

4a
AP1 = (2-47)

I

I -



FORMULAS COMMONLY USED IN MISSILE AERODYNAMICS 23

The loading distribution within region II is conical from the extremities
of the leading edges as calculated by Busemann 13 For the right region,we have with reference to Fig. 2-8

AR 4a 1 i cos'(1 - 2B tan (248AP ,z = l -Vi (2-48)

The loading is written here as the two-dimensional loading minus a decre-
ment due -to the wing tip. The decrement due to the wing tips is shown

S C

(a) X s-c/B

\ I //
\ /

II \ / II

(b) ,I,

Fro. 2-8. Cases for rectangular wings. (a) Case 1, BA > 2; (b) case 2, 1 _: BA 2;
(c) ease 3, 4 _: BA :_ 1.

in the loading diagram of Fig. 2-9. In 'region III, the influence of both
wing tips is felt so that both decrements apply

AP111 = a 1- [ _ cos' (I -2B tan01

- -cos1 (1 - 2B tan 02)]}(-9

Span-loading results are now given for the case of BA > 2 so that only
the influence of -one tip is felt over the length of any chord:

4acr
0c =- 0 y : (2-50)

B - B

S4ac { [o- 2B(s- y)]

]B(8

+ B2 )'J'j(2-151)

ir C
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The second equation gives the span loading in the tip regions, and the
slope of the over-all span loading is shown in Fig. 2-9. The distance
behind the wing leading edges of the center of pressure is

x., 11 - 2/3BA* " 21- 1/2BA I < BA (2-52)

IC

lX

FRG. 2-9. Loading distribution at trailing edge, and span-load distribution for rec-
tangular wing.

2-7. Simple Sweep Theory
For swept cylinders or swept wings, simple sweep theory offers an easy

method of obtaining the flow field in many instances. Consider a swept
wing of infinite span as shown in Fig. 2-10. Let the free-stream Mach
number MO be resolved into a component,4 M, parallel to the leading edge
and a component M. perpendicular to it. The first thing to note is that
the velocity component parallel to the leading edge does not influence the
flow as viewed in planes perpendicular to the leading edge. The only
role of M, is to move the row of particles in one plane into the next as
shown in Fig. 2-10. The flow in the normal planes thus depends only
on the angle of attack and Mach number in the plane. In particular, if
Mn is subsonic, the pressure distribution is typically subsonic in the
normal planes even though M may be supersonic. For further details
the reader is referred to Jones. 6

Illustrative Example
As an example in the use of simple sweep theory, consider the determi-

nation of the pressure distribution in the neighborhood of the leading edge
of a triangular wing with supersonic leading edges. The use of simple
sweep theory in this connection can be simply seen from Fig. 2-10, where
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the upstream Mach cone from point Q of the triangular wing intersects
precisely the same planform area as if -the triangular wing were part of an

infinite wing. The answer on the basis of simple sweep theory will there-
fore be exact to the order of linear
theory.

For the wing we have

M = cos A (2-53)
V. = Vo cos A

The angle of attack by definition is0

a-

where -w is the uniform downwash Q
over the planform. The correspond-
ing definition for the angle of attack in (a)

the normal direction is

a -w (2-54)

since the downwash - w is unchanged. /
By a direct application of Ackeret's
two-dimensional theory the pressure/.
coefficient isQ

p - po 2 a (b)

q Bn MG. 2-10. Simple sweep theory with

2a application to triangular wing with
S cosh(Mo2 cos2 A- 1) (2-55) supersonic leading edges. (a) Infinite

- 1swept wing; (b) triangular wing.

where Bn is (M 2 - 1) t Equation (2-55) is valid between the wing
leading edges and the Mach lines. Referring the pressure coefficient to
qo rather than qn yields

iP = p - Po 2a (2-56)
go (B2 - tanF A) K

The result of Eq. (2-56) for the pressure coefficient is in accord with Eq.
(2-42) for the loading coefficient since w = ?r/2 - A. The lift-curve slope
of an infinite swept wing varies with sweepback angle in the same way as
the pressure coefficient in Eq. (2-56).
2-8. Conformal Mapping; Notation; Listings of Mapping and Flows

:We will have occasion to use conformal mapping to a considerable

extent, so that it becomes desirable to gather together for ready reference

the notations and formulas -to be used., This section is not intended to

be an4ntroduction to the subject such as, for instance, Mihae-Thompson's
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discussion. Conformal mapping is useful for finding incompressible
potential flow about various missile cross sections from the known flow
about other sections. The plane in which the flow is to be found is called
the physical plane of the complex variable 3 = y + iz. The plane in
which the flow is known will be termed the transformed plane with com-
plex variable r = + in. An example of the two planes is shown in
Fig. 2-11 for a missile at angle of attack a. and zero bank angle.

I plane o- plane

"Z 17

r

y

VOaOC jVOa,

(a) (b)

Fie. 2-11. Notation for (a) physical and (b) transformed planes.

The transformation equation is the relationship connecting the complex

variables 8 and a. The transformation written in the following form

= 0() (2-57)

can be interpreted to mean that any point in the 8 plane can be trans-
formed into a corresponding point in the a plane. Likewise the inverse
relationship

a 3( ) (2-58)

can be interpreted to mean that any point in the o, plane can be trans-
formed into a corresponding point in the a plane. The transformations
we use will be ones causing no distortion of the planes at infinity. In such
cases the transformation can be written

a + C(2-59)
n=

n-1

a . k. (2-60)

n-.1

The constants-cn or k, may be complex. Several transformations which
we will use are listed in Table 2-2.
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Twvo-dimensional incompressible flows are described analytically by
the two functions of a real variable, the potential function and the stream
function, or by a single function of a complex variable, the complex poten-
tial. The complex potential W(A) is

W(3) + ilp (2-61)

In accordance with Fig. 2-11 the velocity components parallel to the y
and z axes are denoted v and w, respectively, while the radial and tan-
gential velocity components are v,. and ve. The v and wV velocity corn-

TABLE 2-2. CONFORMAL TRANSFORMATIONS WITH FIELD AT INFINITY
UNDISTORTED IN TRANSFORMATION

A. Circle into an ellipse:

2b

.2a

a plane a-plane

ro +

a2 - b2

- 3'[a + (Q, - a, +b)j

B. Circle into planar midwing and body combination:

o

if plane a plane

A -2ro = Is + a2

S+ST= \8+!2 E/' +L0

=o A +) A2[3

I') -~ a2]

+ upper half spaco
-lower half space
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TABLE 2-2. CONFORMAL TRANSFORMATIONS WITH FIELD AT INFINITY
UNDISTORTED IN TRANSFORMATION (Continued)

C. Circle into planar wing: rz
-S +S

a plane plane

3 -
2 ro

s2=+

ro8

+ upper half space

- lower half space

ponents are related to various functions as follows:

dW

0-- O = v (2-62)

O =: -- 0 = Wo
Oz ay=

while the components v, and ve are given by

dWd = (Vr - ive)e - a

V, = !L ¢ = o (2-63)
r 00 Or

VO = - - --
Or r O

The flow corresponding to any analytic function W() can be constructed
by splitting W into real and imaginary parts and investigating the shape
of the streamlines given by 4, = constant.

-The complex potential W(3) for flow associated with a given shape
in the j plane can be transformed into a corresponding flow in the o'
plane by employing the transformations of Table 2-2. The complex
potential in the a plane, WI(o), is formed in accordance with the following
relationship

WI(o) = Wl(o(a)) = W() (2-64)

j r
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If the velocities in the a plane are v and w and if those in the a plane are
v, and wi, then

dW1  dW dadcr d do

dc = (v _ iw) e p i ad (2-65)
vI - iw= (v - iw)-=( w exp darg-)

The conjugate complex velocity, v - iw, is thus magnified in the trans-
formation by the factor d3/dal and rotated by the angle arg (d3/da).
By making the transformation equations of the same form as Eq. (2-60),
the value of d3/dr is unity for a -+ oo and a -- o, and the arg (dj/da) is
zero under the same conditions. The flow field at infinity is thus undis-
torted. If the flow past a body B, in a parallel stream is known, the flow
past a body B 2 in a parallel stream is obtained by use of Eq. (2-64)
through the transformation of the type given by Eq. (2-59), which con-
verts 3, into B 2. In the present case the flow velocities are considered
tangent to fixed surface boundaries, and Eq. (2-65) insures that this
tangency condition is maintained during the transformation. Another
case arises for bodies whose shapes are functions of time. Some of the
complex potentials we will use are listed in Table 2-3.

TABLE 2-3. COMPLEX POTENTIALS FOR VARIOUS FLOWS

A. Circular cylinder in uniform flow:

TWI(q) -iVoeA~- r'v'

V 0

B. Uniformly expanding cirele:

Wi(a) rov, log a
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"AjLE 2-3. COMPLEX POTENTIALS FOR VARIOUS FLOWS (Continued)

C. Expanding ellipse of constant a/b ratio:

Wi~or) = E log a+ (at - a2 + b2)
2v 2

a S = rab

D. Ellipse in uniform flow:

2a [) (2 a 2 + b)J

(a + b)2e2 iV
o + (a2 -a 2 + b) J

E. Planar midwing and body combination:
,7

V
a

-s +s IV1() = -iVo [( + ~)

F. Ellipse banked with respect to lateral axis:

-iVo (, 2 + 2)(a + 0 2
bw(,f) 2  0[,, + (, 2 + c)TJ

~~C2 = Wa - b2)C-21V
/

~/
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2-9. Elliptic Integrals

We shall have occasion to use elliptic integrals a fnumber of times, so
it is desirable to define notation and usage. The elliptic integrals of
the first kind F(k,o) and of the second kind E(k,o) are defined as definite
integrals

f dz _ in-1 0 dx
F,€= 1 ki z) (1 x2)3  -C(1 )fo= __ I n(1 -k'2xy d (2-66)

( E(k,V) - I2 sin 2 z) i d z  dx

The angle 0, which will usually lie between 0 and 7r/ 2 , is termed the ampli-
tude, and the parameter k is termed the modulus. The elliptic iDtegrals
are functions of amplitude and modulus only. If the amplitude is 7r/2, we
call the elliptic integrals complete, and use the notation

ii

K(k) F (k )
E(k) = B (

Thus if the amplitude is not specified, it is assumed to be 7r/ 2 , and the
elliptic integral is complete. Tables of the elliptic integrals can be found
in Byrd and Friedman." s

SYMBOLS

A aspect ratio
B (M -

c local wing chord
co velocity of sound in free stream in X, , system
cz section lift coefficient
On complex constant
Or root chord
C c velocity of sound at infinity in ,, system
CS cs velocity of sound at stagnation point in :,P,2 system
(cci) o span loading at root chord
C function depending only on r
CL lift coefficient based on wing planform area
E elliptic integral of second kind
F elliptic integral of first kind
Ik modulus of elliptic integral
k, complex constant

, K complete elliptic integral of first kind
le leading edge
L characteristic length

' t
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M, Mach number normal to leading edge
M0  free-stream Mach number in ,g,2 system
M. Vo/c.
n cycles per second
p static pressure
P0 free-stream static pressure in Xg,2 system
POO static pressure at infinity in ,7,r system
P pressure coefficient
P+ pressure coefficient on impact surface
P- pressure coefficient on suction surface
AP loading coefficient
q magnitude of velocity
qo free-stream dynamic pressure, YpoV o

2

qn component of qo normal to leading edge
r,O polar coordinates; y = r cos 0, z = r sin 0
R subscript, at reference condition
RP real part of
sin maximum semispan of triangular wing
t time in tg,2 system
te trailing edge
17, V, fv velocities along t, g, and 2 axes
v, w velocities along y and z axes
v1, W1 velocities along and t axes
Vr, V radial and tangential velocities in y,z plane
Vo free-stream velocity
W complex potential in 3 plane
W, complex potential in a plane
x, y, z body axes for triangular and rectangular wings
XCP streamwise distance to wing center of pressure
:Z, Fig. 2-1
a complex variable, y + iz
a angle of attack

la, angle of attack in plane normal to leading edge
7, ratio of specific heats
8 half angle of wedge
0 polar angle in y,z plane
A sweep angle of leading edge
v tan-' (y/x)
p mass density of fluid
pO mass density of free-stream fluid in 2,g, system
PW mass density of fluid at infinity in , system

,, Fig. 2-1
c. complex variable of physical plane, + in
r time in , system
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0 velocity potential in Xg,2 system; also amplitude of elliptic
integral

4) velocity potential in ,i7," system
X frequency parameter

stream function
w semiapex angle of triangular wing
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CHAPTER 3

SLENDER-BODY THEORY AT SUPERSONIC

AND SUBSONIC SPEEDS

The principal purpose of this cbapter is to derive a number of general
formulas for slender bodies at subsonic and supersonic speeds having
application to a wide range of slender missiles. The formulas yield
pressure coefficients, forces including drag, and moments for such con-
figurations as slender bodies of revolution, bodies of noncircular cross
section, wing-body combinations, and wing-body-tail combinations.
The basic results of this chapter are applied to nonslender missiles in sub-
sequent chapters.

Slender-body theory is greatly simplified if only bodies of revolution
are taken into consideration. Then the mathematical analysis can pro-
ceed along the intuitive lines of sources and-doublets. The first part of
this chapter including Sees. 3-1 and 3-2 considers the problems of deter-
mining the potentials for slender bodies of revolution. It also serves as
an introduction to the theory for bodies of noncircular section, the
analysis of which is not so direct. The second part of the chapter, Sees.
3-4 to 3-11, is concerned with the more general analysis based principally
on the methods of G. N. Ward.1 The analysis for bodies of revolution
suggests certain procedures used in the general analysis. The third part
of the chapter is concerned with slender configurations at subsonic speeds.
No results for specific configurations are considered here, but this subject
is reserved for later chapters. The emphasis is on the mathematical
methods and general formulas. Therefore, the reader who would avail
himself of specific results can pass lightly over the mathematics herein,
particularly the Laplace and Fourier transform theories. The theory of
this chapter is limited in application to that range of angle of attack of a
slender missile over which its aerodynamic characteristics are essentially
linear. It is further limited to steady flow in the missile reference system.

SLENDER BODIES OF REVOLUTION

3-1. Slender Bodies of Revolution at Zero'Angle of Attack at Supersonic
Speeds; Sources

In the study of bodies of revolution let us denote the potential at zero
angle of attack, the thickness potential, by 01 and that due to angle of

'34
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attack q0. To obtain a solution for the potential 01 of a slender body of
revolution, it is convenient first to set up the potential to the full accuracy
of linear theory, and then to specialize the general results to slender
bodies of revolution. The basis for the linear theory potential is Eq.
(2-18) for steady flow expressed in cylindrical coordinates (Fig. 3-1)

20) (a+2 L + .a~a24o\
X2  \ r (3-1)

wherein B2  M0 - 1. The potential for a body of revolution at zero
angle of attack is constructed from axially symmetric solutions of Eq.
(3-1), solutions not dpendent on 0. Some axially symmetric solutions
of Eq. (3-1) are

= RP cosh-1 X
r

€,, = P (x2 - B 2r 2); (3-2)

as may be verified directly by differentiation. The second solution is the
x derivative of the first solution. It is easy to see that 0. and oe also
satisfy Eq. (3-1) so that x and 0 derivatives of solutions are also solutions.
The solution 0,, is sometimes termed the supersonic source with center at
the origin because of its'obvious similarity to the potential for an incom-
pressible source, 1/(x2 + r 2);4.

It is intuitively obvious that a body of revolution in a uniform flow can
be constructed by adding sources and sinks in just the right strengths
along the axis of the body. Let the source strength per unit length
along the x axis be f(Q). The continuous distribution of sources (and
sinks) represented by f(Q) can be summed by integration to yield their
combined potentials.

J=,[(x - )2 - B2r2]1 (3-3)

The sources used are of the 0, type, and the limits of integration are pur-
posely not specified. The limits are established on the basis of certain
arguments explainable with the help of Fig. 3-1. The Mach cone from
point P will intersect the x axis at a distance x - Br downstream from
the origin. Downstream of this intersection no source can influence
point P since the region of influence of a source is confined to its down-
stream Mach cone. The upper limit is therefore x - Br. The sources
start at x = 0 in the present case, and f(Q) = 0 if < 0. Therefore any
lower limit equal to zero or less is possible. Wa therefore write

]oo [(x - ) - Br (3-4)

It is to be noted that a potential Vox due to the uniform flow is additive to
- to obtain the total potential.
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The source strength distribution f( ) must be determined from the
shape of the body. To the accuracy required here the boundary condi-
tion yields with reference to Fig. 3-1

OlaOr vr dro S'(x)7o -- - 2rr--'- (3-5)
Vo -Vo dx 2irro

The quantity S(x) is the cross-sectional area of the body of revolution.
To utilize this boundary condition we must determine 04g/Or from Eq.

\.Mach cone

\P
\z
\r

V0  a.i o 0
X'! y

Fmo. 3-1. Axes and notation for body of revolution at zero inuidence.

(3-4). Assume that f(0) is zero, and rewrite Eq. (3-4) as

€t = a fZBr f) cosh-1 d (3-6)

For a "slender body," the body radius is small compared to x, and the
quantity (x - )/Br is large except for a limited interval near the upper
limit, which we can neglect. The inverse hyperbolic cosine can then be
expanded

cosh-X B log 2(x ) +... (3-7)~hIBr Br

For a slender body, Eq. (3-6) therefore assumes the form

=T~ fxfQ) log (x - ) d - - jf(f) log -i- d (3-8)=o f .
from which a) f (3-9)ar r

From Eq. (3-5) the source strength is directly related to the body shape

f(x) _ VoS'(x) (3-10)
AX) ~ ~2ir (-0

and the potential from Eq. (3-8) Is then

S  '(X) log Er 2 S'Q() log (x - /) d (3-11)

4o 2r 2 2 xf"
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For purposes of physical interpretation, separate ot into a part depend-
ent on r and a part independent of r.

+- = / log r + g(x)

g*x) .+ X)i Blog ,S"Q) log(x - )d' (3-12)2v 2( 2=r cg x2JO'

With reference to Fig. 3-2 the thickness potential is the sum of a part
which depends on the position in the crossflow plane AA, and a part
which has the same value for every point in the plane. The part of 4,
depending on r is precisely the potential function for an incompressible
source flow in the crossflow plane. The flow velocities in the crossflow
plane depend only on this term since g(x) has the same value all over the

!x

A Vo Section AA
Fo. 3-2. Source flow in crossflow plane of body of revolution.

plane. The g(x) term can, however, influence the pressure coefficient,
which depends principally on 4,0/x. To obtain the function g(x), it
was necessary to specialize the full linear theory potential to a slender
body of revolution. We will consider next the effect of angle of attack,
which is additive to that of thickness in a simple way. The question of
pressure coefficients and forces is left until later.

3-2. Slender Bodies of Revolution at Angle of Attack at Supersonic
Speed; Doublets

The axis system and the body of revolution at angle of attack are
oriented with respect to the uniform flows as shown in Fig. 3-3. The
component of velocity Vo.cos ac along x causes 0, as discussed in See. 3-1,

- A

A

Section AA
Mxa. 3-3. Incompressible crossflow around body of revolution at angle of attack.
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and the component of the flow velocity Voa, along z causes the potential
component 0, now to be evaluated. Just as 0, was constructed by dis-
tributing sources along the body axis, so 0. is constructed by superimpos-
ing dipoles along the axis. First consider the dipoles formed from the
axially symmetric solutions of Eq. (3-2). The dipole is formed by placing
a sink directly above a source of equal magnitude and letting the source
approach the sink, while keeping the product of the magnitude and dis-
tance between source and sink a constant. This physical process is
mathematically equivalent to taking the derivative of the source solutions
with respect to z. The constant multiplying the solution, the so-called
dipole strength, is of no concern at this point; only the analytical form of
the dipoles is of interest: For the two source solutions of Eq. (3-2) we
have the two corresponding dipole solutions:

x sin 0 r sin 0
Od, = RP r(X2 - B 2r2) = RP (x 2 - B 2r2)" (3-13)

Consider now a superposition of dipoles along the body axis. If d( )
were the dipole strength per unit length, we could form a dipole potential
similarly as the source potential was formed from 0., solutions.

€e -- r sin 0 f (B - d()) d (3-14)

Unfortunately this integral is infinite because of the 3/2 power infinity at
the upper limit. Though the singularity is mathematically tractable by
the use of the concept of the finite part of an integral,' we will avoid the
singularity by other means. Specifically we will obtain a potential by
superimposing dipoles of the kd, type in strength h( ) for unit length along
the body axis, and then taking the x derivative of the sum which is itself
a dipole-type solution.

sin0 0 f -Br h()(x- d )d
= Ox Jo [(x - )2 - B2r2jI_ (3-15)

For a slender body of revolution, x >> Br, and Eq. (3-15) takes on the
simple form

Ssin0 h(z) (3-16)r

The function h(x) is now to be determined in terms of the boundary
condition involving angle of attack. The potential of the uniform flow is
Vocez. The condition of no radial flow-in the crossflow plane at the-body
surface due to angle of attack yields

O (k -+ Voaz) = 0 (3-17)Or



SUBSONIC AND SUPERSONIC .SLENDER-BODY THEORY 39

with the result that
h(x) = Voacr 2  (3-18)

The potential of a slender body of revolution due to angle of attack is
thus simply

sin 0
C. = Voar02 r (3-19)

The physical interpretation of the potential 0, is that of an incom-
pressible two-dimensional doublet in the crossflow plane. There is no
additive function such as g(x) in Eq. (3-12) for the potential due to
thickness. The entire potential due to angle of attack could have been
constructed by considering the flow in each crossflow plane to be incom-
pressible. In fact, a simplified slender-body theory based on this pro-
cedure is described in the next section.

3-3. Slender-body Theory for Angle of Attack
The distinguishing characteristics o flow about slender bodies was dis-

cussed by Munk in his early work on the aerodynamics of airship hulls 3

In this work he laid down the basis of Munk's airship theory which has
subsequently been extended into wbat is now known as slender-body

6 0
Fia. 3-4. Axes used in slender-body theory.

theory. Consider a slender body, not necessarily a body of revolution,
flying through still air at a speed V0, at Mach number Mo, and at an
angle of attack a, and passing through a plane fixed in the fluid. The
flow as viewed in the plane is nonsteady as the body passes through it.
If, however, the plane is fixed in the missile, the flow will appear steady.
Let the i,9,2 axis system be oriented as shown in Fig. 3-4 with the 2 axis
parallel to Vo, and let the crossflow plane correspond to 2 equal a con-
stant. The flow about the missile is governed by Eq. (2-31) for linear
theory

B 02@ 2C1 02'P 0 (3-20)
,02 3y=2  7Z2 =

If the body is sufficiently slender (or if the Mach number is close to
unity), the first term of the equation is negligible, so that we have

4 + ' 0 (3-21)

t
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For an observer fixed with respect to the body, the flow in any plane
normal to the t axis is thus the steady incompressible flow based on
boundary conditions in that plane. It is independent of the crossflow in
all other planes. An example of the incompressible flow in a normal
plane is shown in Fig. 3-3. The normal plane will be defined as the plane
normal to the body axis. The planes : = constant are crossfiow planes.
For small angles of attack, the flow patterns in the normal plane and
crossfiow plane can be considered identical for slender bodies.

The foregoing simplified analysis of the flow about a slender body is
generally applicable to the calculation of the potential due to angle of
attack as we have seen in the preceding section. However, it is not ade-
quate for obtaining the potential due to thickness existing at zero angle
of attack. The mathematical reason for this inadequacy is readily
apparent. In descending from three variables in Eq. (3-20) to two vari-
ables in Eq. (3-21), we eliminated the possibility of determining explicitly
the dependence of the potential on :. For instance, any solution to Eq.
(3-21) is still a soldtion if a function of t is added to it. Furthermore the
addition of a function t will not change the velocities in the crossflow
plane. Such a function of : does, however, change the axial velocity,
and therefore the pressure coefficient, which depends principally on this
velocity. It turns out that the function of : is different for subsonic
and for supersonic speeds. This feature is the essential difference
between slender-body theory at subsonic and at supersonic speeds, as we
shall subsequently see.

SLENDER BODIES OF GENERAL CROSS SECTION

AT SUPERSONIC SPEEDS

3-4. Solution of Potential Equation by the Method of Ward

In the ensuing sections it is our purpose to derive the principal
formulas of slender-body theory for supersonic speeds following the
method of Ward.' Some attempt will be made to maintain mathemat-
ical rigor and to carry order-of-magnitude estimations of the terms
neglected in the analysis. The essential method of the analysis is to find
a general solution for the wave equation of linear theory, and to select
those terms out of the general solution that remain under the assumption
of a slender body. In this way all terms that 9hould appear in slender-
body theory are found explicitly.

The body is assumed pointed at the front end, and is either pointed or
blunt at the rear end. The body length is taken to be unity, and the
maximum radial dimension is t. The angle between the free-stream
direction and planes tangent to the body should be small, as well as the
rate of change of this angle with streamwise distance. The assumptions
assure that there are no discontinuities in the streamwise slope, and hence
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no singularities in 4. If one requires no singularity in local pressure,
which depends principally on the axial derivative of 0, he must impose
the additional requirement of no discontinuities in streamwise curvature.
If d is the maximum diameter of any cross section, the curvature in the
crossflow plane at any point on the body where it convexes outward
should be 0(1/d). No such restriction is necessary for points where the
body is ccnvex inward as in a wing-body juncture. The foregoing restric-
tions simply assure that the perturbation velocities due to the body are
small compared to the free stream. At a sharp leading edge, the curva-
ture is convex outward and certainly of much greater order than 11d.
The slender-body theory gives infinite perturbation velocities and pressure
coefficients at such points so that the estimates of the orders of magnitude
of the terms neglected in slender-body theory become invalid. Certain
gross terms such as lift and possibly drag may, nevertheless, be accurate
to the order of magnitude indicated in the following formulas. Thus,
while the local pressure coefficient is physically untenable, it is confined
to a restricted region, and its net influence on gross forces can be negli-
gible. The order of magnitude of the remainder terms in the equations
for the physical quantities due to the approximations of the analysis will
be given in terms of the maximum radial dimension, which is assumed
small compared to unity (1 = 1), and which is designated t.

Let 0 be the- ' ttion velocity potential for unit free-stream veloc-
ity with the sy..,in ot axes shown in Fig. 3-4. The perturbation veloc-
ities are then

U- L I _V = L (3-22)

Equation (2-18) specialized to steady flow forms the basis of the present
analysis:

Og + Oz - B2 0. = 0 B 2 =M 2 1 (3-23)

In the analysis which follows we seek a general solution of Eq. (3-23), and
then pick out the terms of an expansion of the general solution appropri-
ate to a slender body. For supersonic flow the mathematical tool con-
venient for doing this is the Laplace transform theory. Let us first
rewrite Eq. (3-23) in terms of cylindrical coordinates

1 1
€)r+ 4), + -1 oe - B324) = 0 (3-24)

The transformation we will use converts the potential O(x,r,O) into a

transformed potential 1(p,r,O) by means of the Laplace operator L.

f( e--- J (g,r,0) di (3-25) f

---- ---- ----
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With reference to Churchill,4

L[¢,rr] = ,

L[4ir] = 4r
L[¢ee] = 4ee (3-26)

L[¢' ] = p24 - pk(0+,r,O) - 0j(0+,r,O)

Since in supersonic flow there is no influence of the body for X less than
zero and since 0 is continuous, we have that 1(0+,r,O) is zero. Also we

may assume that a (0+,r,0) is zero on the basis of the following physical

argument. If (0+,r,0) jumps discontinuously crossing : = 0, we can

make it continuous by an infinitesimal fairing of the body without sig-

nificantly influencing the jump. On this basis we take (0+,r,0) as zero.

The physical argument is not actually required, and the mathematical

treatment with L' (0+,r,0) not zero will give the same final results as

proved by Fraenkel.1 The transformation of Eq. (3-24) is thus

1 1

4A so r + -o =Eq (3-27)
A solution of Eq. (3-27) can easily be found by the method of the separa-

tion of variables in the form

'' = . [C.(p) sin nO + D.(p) cos nO]I.(Bpr)
n-m0

+ o [E.(p) sin nO + F.(p) cos nO]Kn(Bpr) (3-28)

The functions C.(p), D,,(p), etc., can be considered constant so far as
Eq. (3-27) is concerned. Actually they are arbitrary functions of p
chosen so as to satisfy the boundary conditions. The functions I
and K. are modified Bessel functions of the first and second kinds,
respectively. For large arguments they have the following asymptotic
behaviors:

eBpr
I.(Bpr) (2irBpr) (3-29)

~~~~K.(Bpr) ,-,\- -"(3-30)

The dominant term of the inverse transform of the I. function represents
upstream waves increasing exponentially in strength along upstream
Mach waves, X + Br - constant. The K,,(Bpr) functions, on the other
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hand, represent downstream waves attenuating exponentially along the
downstream Mach waves, X - Br = constant. It is clear that we are
thus interested only in the K,(Bpr) functions except for possible rare
cases. For only the K,(Bpr) function Eq. (3-28) can be written into the
following compact form by combining the sin no and cos nO by means of
arbitrary phase angles 5,(p):

= Ao(p)Ko(Bpr) + A,(p)K.(Bpr) cos [nO + 6.(p)] (3-31)
n-1

The next step in the analysis is to find the special form of Eq. (3-31)
appropriate to slender configurations. A slender configuration is one
characterized by the fact that its r dimensions are small compared to its

dimensions. We therefore seek a form of Eq. (3-31) valid for small
values of r. The questions which then arise are: In what region will the
new form be valid, and how large an error occurs in P as compared with -1,
from Eq. (3-31)? To obtain the form of Eq. (3-31) for small r, we note
the following expansions of the Bessel functions for small values of r
(y is Euler's constant):

Ko(Bpr) = -(y + log Br[ + 0(r 2 )]

1 2

Ki(Bpr) = 2 Bpr [1+ (r2 log r)] (3-32)
K,(Bpr)(n - 1)! / 2 )

K =(Bpr) 2 Fp) [1 + 0(r2)]

The dominant terms in r therefore yield

-('+ log-Br A0(p)

+ (n -1)! A,(p)r'- cos (no + SO (3-33)+V0
n-1l

We use the subscript zero to denote the value of -1, for small r. The frac-
tional error in cJo is at most O(r2 log r) and, if the K, term is missing, then
the error is 0(r 2). Inspection of Eq. (3-33) shows that the series con-
verges if r is greater than some value ri. The series converges external
to a cylinder enclosing the body as shown in Fig. 3-5. The series will
usually not converge inside this cylinder and does not represent the solu-
tion at the body surface. It must be continued inside the cylinder by the
process of analytical continuation. Since r, is some dimension of the
same order of magnitude as t, the fractional error in po is 0(t2 log t).

To establish the potential 0o in the 3 plane, we must take the inverse
transform of Eq. (3-33) term by term. For this purpose denote the



44 MISSILE AERODYNAMICS

inverse transforms of the various terms in the equation as

ao(o) = L-[- Ao(p)]

a*( ) -ib-*() = L-'[-- J ) " An(P)ei-"]

The inverse transform of Eq. (3-33) is then

a*Orao 'log+ + br* sin nO (3-35)
nmln

n-1

It is clear that Oo is the real part of the function W(a) of a complex vari-
able of a = rei5

Oo RP W(g) a = rei°  (3-36)

W(a) ao log a + be + an (3-37)
n-1

What we have shown is that 0o is a solution of Laplace's equation in
the crossflow planes, : equal to a constant. The function bo(Z) is the

1r 1

!y

S3 plane, 3=1

FIG. 3-5. Cylindrical control surface enclosing slender body.

function left indeterminate in the simplified treatment of slender-body
theory in Sec. 3-3. In the form of Eq. (3-35) the series converges outside
a cylinder of radius r, enclosing the body. Although the series converges
for large values of r, it does not follow that it represents the flow about a
slender body for large values of r. This is apparent when we recall that
Eq. (3-33) was established by extracting from Eq. (3-31) for the full
linearized theory those terms dominant for small values of r. Slender-
body theory is accurate, therefore, only in the field near the body. To
obtain solutions for slender bodies for distances far from the body it is
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necessary to retain the full linearized equation. The slender-body poten-
tial 40 has the fractional error in the form (4, - 0o)/) of order t2 log t.

3-5. Botndary Conditions; Accuracy of Velocity Components

First let us consider the matter of boundary conditions and then turn
our attention to the accuracy of the velocity components compared with
those for the full linearized theory. Consider contours C and C2 in the
crossflow planes corresponding to : and -+ d: with the body as shown in
Fig. 3-6. Let the normal and the tangent to the contour in the crossflow
plane be v and r, respectively. Consider a streamwise plane containing '

hZ

i ,4y

Fra. 3-6. Boundary conditions in streamwise plane through slender body.

shown with section lining in Fig. 3-6. The plane is normal to r and inter-
sects an element of length dl of the body surface between C1 and C2. Let
n be the outward normal to T and dl. Thus n is the normal to the surface
and lies in the streamwise plane. In the streamwise plane the exact
condition of flow tangency is

V0(1 + o/o) Vo o5/ov
dj: dv

r L 1 + 0 dv(3-38), ~or -=

The quantity dv/d is the streamwise slope of the body surface. Since by
hypothesis dv/dY: is 0(t), we have from Eq. (3-38) that the velocity normal
to the body in the crossflow plane is 0(t). With the assumptions regard-

ing the streamwise body slopes and the curvature of the body cross sec-
tions, the velocity at the body surface will not deviate from the free-
stream direction by an angle greater than 0(t). Since the magnitude of
the velocity is of the order unity by hypothesis, the velocities in the cross-
flow plane normal to and tangential to the body contour are both 0(t).
Therefore in Eq. (3-37) IdW/dal is 0(t). If each term in the dW/dj equa-
tion is of like magnitude, then

ao 0(11) a, = (tn+2)
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Since differentiation with respect to t does not change order of magnitude,
we have from Eq. (3-35) for the order of magnitude of the perturbation
velocities (assuming bo' is not a dominant term in a4/o0)

O(t2 log ) - (t) = 0(t) (3-39)

and for the potential
0 (t2 log t)

Let us now linearize the boundary condition, Eq. (3-38), and estimate
the order of the error introduced thereby. Let us also consider the errors
due to the use of 0o rather than 0 associated with the complete linearized

equation. We will then be able to tell which of the two simplifications
actually controls the accuracy of slender-body theory.

Linearizing Eq. (3-38) yields simply

O4 dv0- = [1 + 0(t2 log t)]
Ov di (3-40)
L L +' 0 (t3 log t)

Ov d

For 0o we will use the linearized boundary condition

Oo = dv (3-41)

Now the error due to use of 0o for 0 was shown to be

0 = 0 + 0(t 4 log2 1) (342)

The error in axial velocity is the same since derivation by x does not
change the order of magnitude

0ao = 10._0 +t O(t4 log 2 t)

The error in the crossflow velocity components is

€ = €o- + 0(t, log t)

(3-43)0"= 0- + O (t, log 1)

since the fractional error in the velocity components is the same as the

fractional error in 0o (as Ward has proved). It is seen that the error due
to linearizing the boundary condition equation, Eq. (3-40), is the same as
the error due to the use of 0o for 0, Eq. (3-43), so that the two simplifica-

tions are compatible.
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3-6. Determination of ao(o) and bo(:,)

It is possible to obtain the values of ao(.) and bo(t) in Eq. (3-35) from
the distribution of the body cross-sectional area along the body axis
regardless of the cross-sectional shape. The higher-order coefficients a,(:)
depend on the shape. The a0 log r term corresponds to source flow in the
crossflow plane and is zero if the body cross section is not changing size.
To evaluate ao consider the contour K shown in Fig. 3-7. From the

/\I

L -....... -.. I .. - - ,-- - --

A Section AA

FIG. 3-7. Contour for evaluation of a0().

integral of the outflow across K

dr= -r rdO = _ - - cos nO r, dO
Jo Ovr r n..i

n-1

= 2rao (3-44)

Now invoke the linearized boundary condition (Eq. 3-41) and reevaluate
the contour integral about K:

-dT = d. dvdr = S'(T) (3-45)

Here S'(2) is the cross-sectional area in the crossflow plane. The final
result for ao(t) is

ao(t) = (3-46)

The function bo(X) is uniform in any cross-sectional plane and yields
nothing to the crossflow velocity components. It does contribute to the
pressure coefficient but not to the loading. Now from Eq. (3-34)

b0(.) = -L-'[tAo(p)] - L-' [Ao(p) log-BP (3-47)

The use of the convolution theorem 4 yields

[S'(.) log B f log (t -)S"() d] (3-48)
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where we have made use of the condition for a pointed body S'(0) 0.
It is seen that bo(X) depends on Mach number.

3-7. Pressure Coefficient

With the magnitudes of the velocity components known, it is a simple
matter to formulate the pressure coefficient from Eq. (2-29). For unit
V0, the pressure coefficient, including quadratic terms in the perturbation
velocity components, is

-P = -2 - (02 + f2) + 2(Mo2  1) (3-49)

If we ignore the last term, the error is 0(t4 log2 t). Let us express the
pressure coefficient with respect to velocity components u, v, and w along
the body axes x, y, z displaced from the axes 2, , by pitch angle ao and
bank angle p (Fig. 1-2). From Table 1-1 the velocity components fl, V,
and fv are related to u, v, w by

= U - vao sin V, + wa, cosp
= v cos+ + w sin (3-50)
= -uao - v sin v + w cos

Direct substitution into Eq. (3-49) yields

P = -2(u - va, sin p + wac cos p) - (v2 + w2) + 0(11 log2 t) (3-51)

where we have discarded the terms u 2a 2, uvao sin V, and uwao cos p as

terms of higher order than J1 log 2 t if a, is 0(t). In terms of the angle of
attack a and the angle of sideslip j3, we have

P = -2(u - vp3 + wa) - (vI + w 2) (3-52)

It is probably important to note that the superposition principle does not
necessarily hold for pressure coefficient in slender-body theory. The
principle of superposition has been retained for the potential, however.

3-8. Lift, Sideforce, Pitching Moment, and Yawing Moment

The lift Z and sideforce 2' can be evaluated by taking the rate of change
of momentum in the 2 and g directions through a control surface of the
type shown in Fig. 3-5. The net transfer of momentum in the vertical
direction through the cylinder r = r , and the base plane area S3 is

-Vo2L' Lo PsinO dS- PV02(1 + 0 )LodS
J'8(\ Or a2 +52O

(3-53)
and in the lateral direction

fs8 (P Or +Og(SO)
= -Or ~ d 2  PVO 2(~ Lo d53  (3-54)

+i
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It is convenient to form the complex force

so that

F p+ (P-PA ieldS
7fspOVoz Jzpo ar\7 Fz -2qo/e 2

- 2f o + 00 + i a\ dS (3-55)

The pressure coefficient is equal in magnitude to the percentage change in
absolute pressure, namely, O(t 2 log t). By -the isentropic relationship,
the percentage change in density is the same magnitude so that

1 + o(t 2 log t) (3-56)

P0

Also we have the relationship

dW 30 .0€*W a= a' -
dW o€ .o (3-57)
- = Oi +  O 0"

These relationships reduce Eq. (3-55) to

F =  -2 f "odS, + f0,0 + ---dWdW\eiOdSd
qo Sor d2 s, HO o df)

2 ( + i a00 dSa + 0(t6 log2 t) (3-58)

It is interesting to note that the variation of density does not enter into
Eq. (3-58) since the variation represents in part the error term. The
first term is simply handled by Stokes's theorem. The contours C and K
are shown in Fig. 3-5.

f8A +~ i o dS3 = -. i O6 co(d + id2) + i KO(dg + id2)

= --i 0 , od -- rie + dO

= , 50oda - 2r rie'" dOj f d2 (3-59)

If we substitute Eq. (3-59) into Eq. (3-58), we have

f = -2i -Oo di - ''' (2 a~odW dW- e r dO d
qo 0 0  0Jo \ r d2 d- )

+ O(t5 log 2 t) (3-60)
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The terms -0o, -, dV are all velocities in the crossflow plane, which

decrease as 1/r or faster as r approaches ¢o. As a result the double
integral is zero in the limit. Thus

= -2i 4o d3 + 0(tl log 2 t) (3-61)

The contour C is the outline of the base intended to pass around any
singular points that may occur on the body surface. It-i6 noted that the
force depends only on the line integral of the potential around the base.
Since .0o depends (except for a constant) only on the base configuration
and angle of attack, we have the simple result that the force depends only
on the base characteristics and is independent of the forward shape
of the body. The formation of vortices behind the position of maximum
span can modify this result for wing-body combinations.

If g, is the center of area of the base, the complex force F can be ex-
pressed as in the following form (derived in Appendix A at the end of the
chapter):

F
- = 47ral + 2S'(1)3g(1) + 2S(1)3,'(1) + 0(t6 log' t) (3-62)
qo

If gg = g + i~ g (3-63)

the forces become

41 RP a, + 2S'(1)% + 2S(1) L& + 0(tl log2 1)
qo : (3-64)

- 4ir IP a, + 2S'(1)2, + 2S(1) L + 0(t6 log2 t)qo

The quantity Y is the sideforce, and 2 is the lift.
To obtain the moment we can write Eq. (3-62) for the force at any axial

distance and integrate the local loading times : to obtain the moments.
Thus, if Me is the moment about the p axis (positive when 2 moves
toward 1) and M2 is the moment about the 2 axis (positive when t moves
toward p), we have

M = MP + iM = i F'( ) d

- i F(t) - i F'( ) d (3-65)

M(1) - 47riai(1) - 4 ,ri a, d:
go f

+ 2i[S'(1) 3(1) + S(1)3'(1) - S(1)s3(1)] + 0(t6 log ' 1) (3-66)
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Thus for the entire slender body

M= -4ir IP (a,) + 47rIP fo 1ad

- 2 IP [S'(1)$o(1) + S(1)$g'(1) - S(1)3(1)] (367)

M 47r RP (a,) - 47r RP 0
1 a, d.

+ 2 RP [,'(1) (1) + S(1)ap(I) - S(1) o(1)]

The quantity Mv is the pitching moment, and M, is minus the yawing
moment.

3-9. Drag Force

The drag formula of slender-body theory is a widely used result which
for special types of slender bodies exhibits elegant mathematical proper-
ties. In the derivation of the drag formula, use is made of a cylindrical
control surface as shown in Fig. 3-5. It is easy to set up the drag force
in terms of pressure and momentum transfer.

D = (po + poV 02) dS1 - f pV 2 (I +x Or6dS,

-J [p + pV. 2 (1+ L dS& - pn()(-68)

The symbol PB stands for the static pressure acting on the base. To
simplify Eq. (3-68) w introduce the conservation of mass.

fJPoVodS f PT7 L"dS2 - jPVO I + LOdS 3 - 0 (3-69)

By multiplying Eq. (3-69) by Vo and-subtracting it from Eq. (3-68) some
simplification is achieved within the framework of exactness.

D =f podS- f p Vo2 "a0€d.=2fsK . o+p 1. oI 1
- , p + P 0 - L + dS3 - pDS() (3-70)

This result is now further simplified by assuming that the density is uni-
form, and the resulting error is recorded in the error term with the help
of Eq. (3-56). Also, the static pressure is eliminated by means of
Bernoulli's equation, Eq. (3-49), which in cylindrical coordinates is

= -2-- - ,[-- + 1r ("1-)J + O(t 4 log2 t) (3-71)

With these approximations, Eq. (3-70) now becomes
_o = _,o,,o0 )2 + L -80-\ 21 s

D 2 f tkoOdS2 f(o\+ 1 /4,\
qo iz Or O7,; Or

- PUS(1) + O(t 1 log2 t) (3-72)
[/ .
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where Pu is the base-pressure coefficient. From the results of Appendix
B at the end of the chapter, Eq. (3-72) takes the form

D aobo' do + 27rao(1) - o ° d-
qo J ac

- Pn'S() + O(t6 log 2 t)

= 4ir ao'bo d: - 2irao(1)bo(1) - fi ckoP d+

- PBS(1) + 0(tl log 2 t) (3-73)

The drag can now be evaluated since the values of ao and bo are given
explicitly by Eqs. (3-46) and (3-48). We obtain

D = Iflfl lo 1 - ()fo lg I1 S"() dt2log (s)S"() d1 ds -' o)
go 2 nior 2vJ

- o -00 dr - PBS(1) + o(t1 log2 t) (3-74)

This is the Ward drag formuia for a slender body. It is interesting to
note that the drag represented by the first two terms depends only on the
axial distribution of the body cross-sectional area and is independent of
cross-sectional shape. The second two terms depend on the slope of the
body cross section at the base only. We will investigate the various
terms of this drag formula at considerable length in See. 9-3.

Two important classes of slender bodies result in considerable simpli-
fication of Eq. (3-74). These classes occur when the base is pointed or
when the body is tangent to the cylindrical extension of its base. In both
instances the drag formula reduces to the symmetrical form

go -2 log _ S"(s)S'(Q) d ds + O(t 6 log 2 t) - PuS(1) (3-75)

Minimum drag bodies are derived on the basis of this result in Sec. 9-5.

3-10. Drag Due to Lift

The following treatment is good not only for supersonic speeds but also
for subsonic speeds, as we will subsequently show. When a body
develops lift, it develops a wake of one kind or another. A-lifting surface
usually develops a well-defined vortex wake. In this case the contour C
must be enlarged to enclose the vortices as shown in Fig. 3-8b. Another
kind of wake arises when flow separates from a surface under angle of
attack as shown in Fig. 3-8a. We imagine a dead water region to form
in the separation region which is then enclosed by vortex sheets. The
wake can then be considered a solid body extension and the contour
deformed to-enclose the dead water region. The force acting on the body
enlarged to include the dead water will be the same as that on the solid

. . . .- . o .. ... . .... .. ..
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boundaries of the body since the resultant force on the dead water region
is zero.

An inspection of Eq. (3-74) reveals that the drag represented by the
first two terms is independent of the lift, depending as it does only on the
axial distribution of body cross-sectional area. Thus the drag due to lift
is to be found in the integral about C, neglecting any changes in the base-
pressure coefficient due to changes in angle of attack. To evaluate the
drag due to lift we must inspect this integral under the conditions of no

ater

(a)

, / \

\ J /

SLift

(b)
FIG. 3-8. Separated or vortex flows requiring distortion of contour of integration.
(a) Body; (b) Wing-body combination.

lift and of lift. Let the potential 0o be composed of a part Ooo at zero lift
and a part 0o, due to lift

00 = 0oo + 001 (3-76)
The integral about the contour C of the base becomes

C c 0€o00 00€o dr

c, 0oo 0€O4oj

20€+ oi dr (3-77)

The first integral is not part of the drag due to lift. The second and
third integrals are coupling terms between the potential at lift and zero
lift, while the fourth integral is a "pure" lifting effect. The derivative
80¢o1/ov in accordance with the boundary condition, Eq. (3-41), represents
the change in the streamwise slope of the body surface due to angle of
attack a if the angle of attack is arbitrarily taken to be zero at zero lift.

I

-- - -.-.....
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With reference to Fig. 3-6 the potential 0o, must produce a velocity
normal to the body sufficient to offset the component of the free-stream
velocity normal to the body. Thus

- -a cos (v,2) (3-78)

where cos (v,2) is the direction cosine of v with respect to the 2 axis. The
second integral then becomes

00o'01-dr =-a =ooeos(v,2) dr = a Ooodg = 0 (3-79)av c 0=

The second integral is zero, because of Eq. (3-61) since the lift is zero for
0o. The third integral is zero by the analysis of Appendix C at the end

of the chapter. The drag due to lift is therefore all due to the fourth
integral, which by Eq. (3-78) becomes

o001 dr = a -Poi dP (3-80)

Again Eq. (3-61) shows that the lift is

=-2 (oi d! (3-81)

The drag due to lift for constant base pressure is now

D - D= = - 0o 1 dr (3-82)2 C &

where Do is the drag at zero lift. We can put Eq. (3-74) into the follow-
ing form for lift

Do + 2 + APBS(1) + O(t6 log2 t) (3-83)

where AP,, is the change in base-pressure coefficient due to angle of attack.
The physical significance of Eq. (3-82) is that the lift creates a drag

aZ/2 rather than aZ, which would be expected for a flat plate. Thus the
resultant force on a slender configuration due to angle of attack is inclined
backward at an angle a/2 from the normal to the free-stream direction.

3-11. Formula Explicitly Exhibiting Dependence of Drag on
Mach Number

Let us divide the drag given by JEq. (3-74) into parts dependent on and
independent of Mach number. Examination of Eq. (3-74) shows directly
that any part of the drag, d ,endent on Me must occur as a result of the
contour integral about C. To obtain this part, let us write

o- bo= (3-84)
!I

, i
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The discussion following Eq. (3-37) and Eqs. (3-46) and (3-48) shows that
all the dependence of 0o on Mo enters through bo, so that d* is independent
of Mo. Also bo is uniform in the plane of C. Thus 0bo/op is zero, and
the contour integral can be written

00' o dr0 = o d7'+ C€ -0 * ,(3-85)

The first integral is readily evaluated by means of Eq. (3-45)

bo upo dr = 2rao(1)bo(1)

Introducing these relationships into Eq. (3-74) yields the desired drag
equation.

D= -[S'()2 log B _ PBS(1)q0 2 2

+ 11flog S"(s)S"(Q) d ds

7' J( log It"(Q) d - a @*  dr + 0(16 log2 t) (3-86)

The first two terms depend on Mach number. If the base is pointed,
S'(1) is zero, and the first term is zero as well as the base pressure. The
drag on the basis of slender-body theory is then independent of Mach
number (neglecting separation over the base). If the base is tangent to
its own cylindrical extension, S'(1) is zero, and the only effect of Mach
number on drag is through its influence on base pressure. The potential
€* in the equation is just that potential which would be obtained by

applying Laplace's equation to the flow in the crossflow plane as described
in Sec. 3-3.

SLENDER BODIES OF GENERAL CROSS SECTION
AT SUBSONIC SPEEDS

3-12. Solution of the Potential Equation

The treatment by Ward of supersonic slender-body theory has its
counterpart for subsonic flow. Mathematically, the difference is one of
using Fourier transforms instead of Laplace transforms. Actually, the
entire difference between the subsonic and supersonic cases enters through
the bo term. Thus all results derived for the supersonic case not depend-
ing explicitly on bo are unchanged for subsonic speeds. Let us now
find the operational solution to the potential equation, Eq. (3-24), on
the basis of Fourier transforms. Consider the Fourier operator F and
the inverse Fourier operator F- 1 defined by the following pair of reciprocal
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relationships:
f+ cF[((,r,0)] = l 4 0(2,r,0) dt = e(w,r,O)

Flq,~( = I+ e_ e(w,r,O) dw = 0(t,r,o) (3-87)

Note the use of the complex Fourier transform and the placement of the
27r factor. Integration by parts establishes the following transforms for
x derivatives of p:

r1 I(3-88)[F~ =a2 00+ iwe'I&iO -+'

If we can invoke the boundary conditions

0(+ 0) = 0(- 0) = 0
a@ 0(3-89)-:(+°° =L - =0

Eq. (3-24) becomes
a24) 1 aOD I a24 B)
5' + r Tr + r- 02 = B 2W2 (390)

B0
2 = 1 - M 0

2

Again, as in the case of supersonic flow, a suitable general solution of
Eq. (3-90) for the present purpose can be obtained by separation of vari-
ables. In fact, the solution is of the following form in complete analogy
to Eq. (3-28):

S= K,(Bor)[E.(w) sin nO + F.(co) cos nO]
n-0

+ In(Bowr)[C,(W) sin nO + Dn(W) cos nO] (3-91)
The value of- c rc ges from - o to + co, and the arbitrary functions,
C.(w), Dn(W), etc., are to be suitably chosen so that (1) the behavior of €
is not divergent as r-- co, and (2) 4 is real. The requirement that 4 is
not divergent as r -- transforms to the requirement that 4, not be
divergent as r -+ oo, since the transformation does not involve r. We
must discuss separately the cases for positive w and negative W. For
positive c, we have already seen that I(Bowr) varies as er, and is not
odmissible on account of the first condition. Thus

C .(&) = D.(wo) = 0 w > 0 (3-92)
For negative values of w, we must make use of the relationship between

Bessel functions of negative and positive arguments.

K.(-x) = (-1)nK,(x) - riI.(x) (393)T .- z (- 1)nI.(Z) (-3
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The sin nO part of the solution then becomes

E.(-w)K(-Bowr) + C.(-w)I.(-Bowr)
E.(-W)[(-1)nKn(Bowr) - 7iIn(Bowr)]

+t C.(- ) (- )I(Bwr) (3-94)

The I.(Bowr) terms must have zero coefficient if the behavior as r --* 0 is
not to be divergent. This behavior is assured if

- tE.(-w) + (-1)nC.(-W) = 0 (3-95)
We are then left with the solution

En(- )K.( - Bowr) + Cn(- w) I.(- Bowr)

- E.(-)(-1)K.(Bowr) (3-96)

If the coefficients of K.(Bowr) are chosen to be new functions as follows,

B.(w) .(w) c > 0
= (-1).E.(-,) w < 0

A = F.(W) W > 0 (397)
A(W) =(-)-F.(- ) W < 0

the general solution of Eq. (3-91) with the correct behavior can be
expressed as

S= K.(Bo°jIr)[B.(w) sin nO + An(w) cos nO] (3-98)
U 0

It should be noted that Eq. (3-97) does not place any condition on An(w)
and Bn(w) since En(W) and Fn(w) are quite arbitrary. The second condi-

* tion that 4 be real can be simply satisfied by choosing
=
B .( - ¢) = B ( o)(3 -9 9 )

Equation (3-98) is the solution in the transformed plane of the full
linearized equation which is appropriate for subsonic speeds. The value
of k it gives will become small as r -* oo and will extend upstream and
downstream. The problem now is to extract from the full linearized
solution that special solution suitable for slender configurations. The
problem is solved in exactly the same manner as for the supersonic case:
by expanding - as given by Eq. (3-98) in a series valid for small r, and
retaining the dominant terms. In fact, the expansions for 0 are identical
in form

!l00' a *( ) cos n o + b,,*( :,) sin n O

4' = ao(t)log r + bo( + r ) 00 (3-100)
n-i

but the coefficients are now determined as inverse Fourier transforms
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rather than inverse Laplace transforms.

ao(.t) = -F-'[Ao(wo)]

bo(:)= -F-'[ + log B ] Ao(w) (3-101)

The only term that can differ from that for the supersonic case is bo(t).
The rest of the terms in € are solutions to Laplace's equation in the cross-
flow plane and are uniquely determined by the boundary condition in the
crossflow plane regardless of the Mach number.

3-13. Determination of ao(t) and bo(t)

The value of ao(t) in this case is precisely the same as for supersonic
speeds since the part of q involving ao is independent of Mach number.
Thus

S109)
ao(t) =() (3-102)

The function bo(:) is obtained from Eq. (3-101) on a purely operational

basis

bo() - -+ + log 2) ao( ) - F-'[Ao() log IwI (3-103)

The inverse transform of a product of tansforms can be obtained by

means of the convolution integral

[G(co)H())j = f+ gQ()h(. - ) d8 (3-104)

To insure the existence of the separate transforms let

G(w) = coAo(w)

I (o) = log Icol (3-105)
CO

so that g(X) = -iao'(t)

and h(X) = f L Jao d

f 14 t sin wt~ dw (3-106)

With the help of Erd6lyi et al.6

h(2) = (y' + log t) 2 > 0
(3-107)

h(2) = - 1 (-, + log {. l) :t < 02I
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Finally with the help of Eq. (3-94)
i bo ) =a0( logBo 1fo ,

bo= ao(:Z) log j ao() log (. - ) d
1 f 1-

+ f j ao'(Q) log (Q - t) d - Yao(0 +) log Z

- ao(1I-) log (1 - t) (3-108)

3-14. Drag Formula for Subsonic Speeds; d'Alembert's Paradox

The drag force for subsonic speeds will be developed from Eq. (3-73).
Though we have developed the formulas for subsonic slender-body theory
on the basis of a possible blunt base, S(1) 0 0, such a body will not fulfill
the requirements of slenderness. A blunt base in subsonic flow can send
strong upstream signals, which it cannot do in supersonic flow because of
the rule of forbidden signals. As a consequence we must now assume
that S'(1) and S(1) are both zero; that is, the base is pointed. With
S'(1) = 0, bo(t) becomes [for S(:) continuous and S'(0) = 0]

bo(:Z)~ ~ =a(tloE-0 ao'( ) log (Z - ) d2 lfj
+ ao'(Q) log (Q - t) d (3-109)

By Eq. (3-73) the drag is then

Do 1 loB "2 I[S'1)12 - [S'(°)121
qo 2 -- [S

- Sl(:t) fS"( ) log (:t - ) d d:

+ -L f&'(: fS") log X~- ) d d~ - 00 -kokdr
-PUS(1) + O(tI log 2 1) (3-110)

or D 6o cko dT + O(t0 log 2 t) (3-111)

Noting the next to last equation of Appendix B which follows, we have
with ao(1) equal to zero

D
-=0
qo

Slender-body theory thus yields d'Alembert's paradox in subsonic flow as
it should.

SYMBOLS

ao(t) coefficient of log term in expansion for -Po
A,,(p) arbitrary function of p
a (X) coefficients in expansion for W(8)
A.(w) arbitrary function of w

__ _ _ _
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bo(2) coefficient in expansion for 0o
B (M0

2- 1)
Bo (1 - MoI)
B.() arbitrary iunction of c
D drag force
Do drag force at zero lift
f() source strength per unit distance

S F + id
F, F-1  Fourier transform operator, and inverse Fourier transform

operator
h(Q) dipole strength per unit distance
I., K. modified Bessel functions of first and second kinds
L, L- 1  Laplace transform operator, and inverse transform operator
M Mo + iMz
M0 free-stream Mach number
Mg moment about p axis, pitching moment
my moment about 2 axis, negative yawing moment
p static pressure, variable of Laplace transform
po free-stream static pressure
pR base static pressure
P pressure coefficient, (p - po)/qo
PB base-pressure coefficient
qo free-stream dynamic pressure
r radius vector in , plane (also in y,z plane in Sees. 3-1. and

3-2)
ro local body radius
ri radius of cylindrical control surface, Fig. 3-5
RP real part of a complex function
S(t) area of slender configuration in crossflow plane
t maximum radial dimension of slender configuration
u, v, w perturbation velocity components along x, y, z
6, 0, S perturbation velocity components along t, y, z
Vr radial velocity component
V0  free-stream velocity
W(3) complex potential, q + i+
W(a) conjugate complex potential, 0 - il
x, y, z principal body axes, Fig. 3-1

, body axes for a, = 0 and 0, Fig. 3-4
-g coordinate of centroid of S(Z)
Y sideforce along p a:ds

2 coordinate of centroid of S(Z)
force along Z axis, lift

4+
go + i2
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a angle of attack, a, cos v
ac included angle between body axis and free-stream velocity

angle of sideslip, af sin
-y Euler's constant, 0.5772
6,,(p) phase angle
0 polar angle in :, g, 2 coordinates

v normal -to body contour in crossflow plane
variable of integration

p local mass density
pO free-stream mass density
r tangent to body contour in crossflow plane
0 general potential solution of Eq. (3-24)

angle of bank
00a approximation to 0 valid for slender configurations
Od potential for a doublet
'Pa potential for a-source, an axially symmetric potential
4,(p,r,O) Laplace transform of 0
'F(w,r,0) Fourier exponential transform of .0
( 0 transform of O0
(0 variable of the Fourier transform
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APPENDIX 3A

In Sec. 3-8, the complex force, F = I? + iZ, was put into the following
form:

-= _-2i e 0o da + O(t log2 t) (3A-1)q0

It is possible to find a somewhat more appropriate form for calculative

4,
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purposes by replacing 0o by W - 40

- 2i t W da - 2 , o da (3A-2)
qo C o

Some care must be taken in connection with Eq. (3A-2) because the
expansion for W(S), Eq. (3-37), contains a logarithmic term which is not
single-valued

W(a) = ao log a + b0 + (3A-3)
n-1

To make the W(a) function single-valued, we put a cut in the a plane from
So to co as shown in Fig. 3-9, and the argument of the logarithm increases

Cut o

FIG. 3-9. Distortion of contour in cut a plane.

by 2ni every time a crosses the cut. Now the contour C encloses the
cross sectioL of the body base but indents any singular points of W(a) as
shown. The nature of the series in the expansion for W(a) is such that it
converges if IlS is greater than the largest value associated with any
singular point. The series for W(a) will not converge on all of C, and so
we expand the contour to K' on which Eq. (3A-3) is convergent. Then

fj7V da = ,,W da = K(ao log abo+ a,.
' 

n
n-1

= ao(27riao) + 2,rial (3A-4)

Note that the value of the integral depends on where the cut starts. We
will get a compensating term from the other integral.
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For this second integral, integration by parts yields

i#o da = [#o3]c - a dpodp d

-o[!ola - L dr (3A-5)

since .Oo = 4o dv (3A-6)Or 0 d

We have the geometric integrals giving area and moment of area

d9
d [8(1)1 = dT (3A-8)

The integral thus becomes

TC #o d3 = S'(1)so - S'(1) 30(1) - &,(1)S(1) (3A-9)

Finally from Eq. (3A-2) there is obtained
F_
- - 4ral(1) + 2S'(1)3,(1) + 2j,'(1)S(1) (3A-10)go

APPENDIX 3B

We now evaluate the two integrals of Eq. (3-72)

I = f 0o € d8 NOJsOr O0(3-1

12 . K + -a dS3

With reference to Fig. 3-5

I f o2r 0€0d (3B-2)

Nwo.'r a cos nO + b.* sin nONow €=ao log r + bo + (3B-3)
I- r n

n-1

so that (neglecting the sin nO terms)

1 d 2  rla rna m +o1 O '

11 = f dxj rI y,- - ran* c m ao' log r + bo'
joo

+ ancos nO dO
n-1 

r /i

= 27r (aoao' log r, + aobo') d2 (3B-4)

.1i



64 MISSILE AERODYNAMICS

The same result is obtained with the sin nO terms. Let us operate on 12
by Stokes's theorem to convert it from an integral over S3 to integrals
about C, its inner boundary, and K, its outer boundary.

12 TO 7 dS3
f, \06o/rl +

= - o €o dr + f o. rldO (3B-5)
ff 1

00 "" r, dO r, ao log r, + bo

+ . an cosnO)(ao man* cosmO)rin I I r dO

= 2ir(ao2 log r, + aobo)

Thus 12 = 2ir(ao2 log ri + aobo) - c ¢o0 di (3B-6)

APPENDIX SC

The integral to evaluate is that of Eq. (3-77)

1 00 Y 2d, (30-1)

where the contour C is shown in Fig. 3-5. We can subtract the integral
of Eq. (3-79) from I since it is zero

90oo - 06
00 ap3o-~ dic ay dr (3C-2)

Consider the contours C and K enclosing ,S, and apply Green's theorem
to area S3,

0 oo 2001. d

+ f (0 1V,4500 - 000V100 1) d8'3 (30-3)

Here V2 is the Laplace operator, and €oo and 3oi are solutions of Laplace's
equation. Hence,

(43 00-" - 0oo -- dT (30-4)

Since the integral has been transposed to the contour K, we can use the
expansion for 0oo and €On which converge on K but not on C. On K the
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expansions for 0oo and .0o, have the form (neglecting sin n6 terms) !

.000 = c log r + co +" rn

.0 n-(3C-5)

° dcsnO 

n-1

where c, co, cn, and dn are constants. The form of the integrand then
becomes

0,0o 04)oi_ cdi + codi

000 /1 -00cos 6
+ cd 1-0-cos 6+ 0+ 0 (log)r,

\fl4 2f
3  (3-6

i f 01  'oo a001) dO 0 (log r) (3C-7)

Since I does not depend on r, because the drag cannot depend on the
radius r, of the control surface, we can let r1 approach oo.

o(log rA

-=- (~ r) (3C-8)
0 asr, c

l3

=02

4!



CHAPTER 4

AERODYNAMICS OF BODIES; VORTICES

In the present and ensuing chapters we will be concerned with applica-
tion of the general results of the preceding chapter to various types of
configurations such as bodies, wing-body combinations, and wing-body-
tail combinations. Concurrently, it will be our purpose to investigate
how departures from slenderness modify the slender-body results, as well
as how viscosity introduces additional effects, some of which can be
treated by extensions of slender-body theory. In the first half of the
chapter inviscid slender-body theory is applied to bodies of circular and
elliptical cross section. Also, the theory of quasi-cylindrical bodies of
nearly circular cross section is treated. No discussion is included of non-
linear theory or of nonslender bodies, since for zero angle of attack these
subjects are considered in See. 9-4 in connection with drag.

The appearance at high angles of attack of vortices on the leeward side
of slender bodies constitutes one of the most important single causes of
the breakdown of inviscid slender-body theory. However, in one sense
the slender-body theory has not failed at all, but rather the slender-body
model must be generalized. In fact, if discrete vortices are introduced
into the slender-body model to account for the effects of viscosity, it is
not difficult to extend slender-body theory to include the vortex effects.
This is the principal purpose of the second half of the chapter. Results
will be obtained for slender configurations with panels present.

INVISCID FLOW

4-1. Lift and Moment of Slender Bodies of Revolution

In Secs. 3-1 and 3-2, the potentials were derived for slender bodies of
revolution at zero angle of attack, and at angle of attack by introducing
the assumption of slenderness intor the solutions based on the full linear-
ized theory of supersonic flow. The potential for a slender body of
revolution due to angle of attack, Eq. (3-19), is independent of Mach
number, so that the distributions of lift and sideforce along the body are
also independent of Mach number. Let us use the general formula,
Eq. (3-62), to calculate the forces and moments on a slender body of
revolution. The body is taken oriented with respect to -the t, , axes as

66
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in Fig. 3-4 at angle of attack ac. Its centroid then lies along the line
= -ia. Since S(B) and 3,(t) are known, it remains only to deter-

mine a, in Eq. (3-62) to obtain the forces. Although only the potential
due to angle of attack creates lift or sideforce for a body of revolution, the
coefficient a, arises as a result of both angle of attack and thickness
because of compensating terms in Eq. (3-62). We can, however, ignore
b0(t) in Eq. (3-47)- since it has no contribution to a,.

The complex potential for a slender body of revolution consists of the
part W*(3) existing at zero angle of attack plus a part W,( ) due to angle
of attack. The part at zero angle of attack is the sum of bo(.) and a
logarithmic term proportional to the rate of body expansion. With
reference to Table 2-3, the equation for Vt(&) with due regard for shift in
origin is

Wt(a) = bo(.) + r, v log (3 - 3)

= bo(X) + log (a - so) (4-1)

where r. is the local body radius. From Table 2-3 the complex potential
for angle of attack suitably modified for shift in origin is

W1() = -iVox 0 ( - (4-2)

The entire complex potential-with V0 = 1 is

W(j) =b() + L log a + log 1-

- i~o - 1

Expansion of this equation yields the coefficient a1(t) of the - term:

a, = - L'() + ir.2 ,.
2r

_3 S'(g) S() (4-3)

All the necessary quantities are now at hand for evaluating iP" and 2 from
Eq. (3-62):

- + i- = -2S(-)go'(t) = 2iceS(B)
qo qo (4-4)

.. =0 - 2aS(X)
qo qo

The lift per unit axial distance along the span of a cone-cylinder has
been calculated by Eq. (4-4) and is shown in Fig. 4-1a. A similar calcula-
tion has been made for a parabolic-arc body and is shown in Fig. 4-lb.
Since S'(9) is linear in 9 for a cone, the lift distribution is linear as shown.
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Behind the shoulder of the body where S'(I) falls discontinuously to zero,
the lift distribution also falls to zero on the basis of theory. Unless the
body is very slender, some measurable lift would intuitively be expected
to be carried over past the sLoulder, and in practice such is the case.
The second example exhibits equal areas of positive and negative lift.
The net lift on the basis of Eq. (4-4) is zero for this case in inviscid flow,
since te base area is zero. The body boundary layer will usually not

(a)

4-

2i
(dL/d)

0 0.5r 7

2roo

(b)
Fia 1-1. Lift distributions for slender bodies of revolution. (a) Cone-eylinder; (b)
para- Aie body.

stay attached. ' to the point for a body of revolution at angle of attack,
and, if it did, it would give the point an effective base area by virtue of
the displacement thickness of the boundary layer. In either circum-

stance some lift would be expected from the body.
The lift coefficient with the base area as reference area for a body of

unit length is
Z(1)0 L = = = (4-5)

7; , oqS( )

i ~ Slender-body th; .ry thus yields the simple result that the lift-curve slope

of a slender body of revolution is two based on its base area.
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Consider now the center of pressure of a slender body of revolution.
Since the lift per unit length is proportional to S'(:), the center of pressure
is a distance 2,p behind the body vertex as given by

!fo 1  S'( ) d Vol.
= 1-- -Vl (4-6)

I' S'(:Z) dt 7rrB 2

Vol. is the volume of the body 6o" unit
length, and 2B is the radius of its base.

Illustrative Example

Calculate the center of pressure for Fo. 4-2. Coordinates of tangent ogive.

a tangent ogive as a function of its caliber, the length of the ogive in
diameters of the base.

With reference to Fig. 4-2, the equation for the local radius of the ogive
comes from the equation for a circle

[r + (1? - rB)]2 + (L - t) 2 R2

with R = L2 + B
2

2rB

Introduce the nondimensional parameters

r* L x* K = -- calibersrB L 2rB

and express the value of r* in terms of these parameters

r* - -(4K 2 - 1) + [(4K 2 - 1)2 + 16K2x*(2 - x*)] (4-7)

The volume of the ogive is

Vol. = rrB2L fo1 r*2 dx* (4-8)

If we introduce the value of r* from Eq. (4-7) into Eq. (4-8), carry out the
integration, and substitute into Eq. (4-6), we obtain the desired result

-¢, [8K2  (4K 2 -1) 2

(4K2 - 1) (4K2 + 1)2 4 K
16K ) sin-' 4K2 + 1 (4-9)

The center-of-pressure positions in decimal parts of the total body length
calculated by this formula are presented in Table 4-1. According to the
slender-body theory, there is relatively little shift in center of pressure
with change in caliber K for a tangent ogive. The lower value of K to
which the theory is valid depends to some extent on the Mach number.
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TABLE 4-1. CENTER OF PREssunE OF TANGENT OGIVE FROM SLENDER-BODY THEORY

K 2 3 3.5 4 6 8 10

:,IpL 0.457 0.462 0.464 0.464 0.465 0.466 0.466

Only in the li. niting value of a hemisphere, for which K = Y2, is the
center of pressure invariably at the geometric center for oll Mach num-
bers. The foregoing formula does not, of course, apply to such a blunt
ogive as a hemisphere.

4-2. Pressure Distribution and Loading of Slender Bodies of Revolution;
Circular Cones

In the foregoing section on gross forces of bodies of revolution, the
2, , axes were used, but in this section on pressure coefficients it is more

V 0  sin at
V0 COS a'

FIG. 4-3. Axis conventions.

convenient to use the x, y, z body axes. In the crossflow planes the body
cross sections of a body of revolution at angle of attack are ellipses rather
than circles as in the preceding section. The fractonal change in the
major and minor axes of the ellipse from the radius of the circle is 0(a,,)
and can be ignored in the computation of forces and moments. How-
ever, the pressure coefficient involves quadratic terms in the velocity
components, and it is not clear that the difference between the circles
and ellipses can be ignored. However, this question is circumvented
because it is convenient to use normal planes rather than crossflow planes,
so that we have simple potential problems for circular boundaries. To
obtain the potential we can use the principle of superposition. With
reference to Fig. 4-3 we can calculate the perturbation potential 01 due to
the component of velocity V0 cos a, along the body axis and a potential
0. due to Vo sin ao normal to the body axis, and thereby obtain the total
perturbation potential

o q n of bk a a(4-10)
No question of bank angle arises for bodies of revolution, and the pressure
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coefficient depends only on a., which we will simply write as a with the
bank angle zero.

To obtain the pressure coefficient we can utilize Eq. (3-52) in terms of
velocity components u, v, and w along the body axes. Both 0, and 0,
produce velocity components which are linearly superposable. However,
the corresponding pressure coefficients Pt and P. are not generally super-
posable because of the quadratic terms in the velocity components.
However, for bodies of revolution the superposition of Pt and P. can be
demonstrated, as will now be done. Let ut, vt, and wt be the perturbation
velocity components associated with 01, and let ua, va, and W be those
associated with 0,. If the superscript plus refers to the lower surface
and minus to the upper, then from Eq. (3-52) we have for €t

Pt+ = -2ut + - [(vt+) 2 + (wt+)i (4-11)

Pj- = -2u- - [(vi-)
2 + ( i-) 2 1]

For ¢ we have a comparable set of pressure coefficients

P,+ = -2(u,+ + awa+) - [(V.+)2 + (W.+) 2 ]
Pc- -2(ua- + aw.- - [(V.-)2 + (W.-) 2 (

For the combined effects of 4t and 0, with the velocity components addi-
tive, the pressure coefficients are

P,4, = P+ + P,+ - 2(v,+vt+ + - ,+w+ + awt+) (4-13)
P-. = Pi- + P.'- - 2(v-v- + w.-wj- + aw-)

The last term in each instance can be considered as arising from coupling
between ot and 0 . For a body of revolution the velocity vector vt + iwt
in the normal plane is normal to the body surface. The perturbation
velocity in the normal plane due to P, is v, + iwa, while the total velocity
tangential to the body is v, + iw, + ia. Since the two velocities are
perpendicular to each other, their dot product is zero.

(vt + iw) .(v. + iw, + ia) = viv,, + wtw,, + awt = 0 (4-14)

This proves that the coupling terms in Eq. (4-13) are zero. The pressure

coefficients Pt and P. can therefore be separately calculated and then
added.

The absence of coupling terms in the loading coefficient can also be
demonstrated. The loading coefficient is

APP+"a - P-.
=p + - p -

- 2 (w.+wt+ - w i"wi- + vJ+vt+ - vavi- + awt+ - awi-) (4-15)

The coupling term in this instance can be simplified by the obvious sym-
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metry propeities resulting from the horizontal plane of symmetry of the
body of revolution.

u,+ = Ur vt+ = vr- Wt+ = -w (416
U. + = -?a- V. + =- -- W-- W --

The coupling term becomes
(W.+,Wt + - w,,-wt- + V,+Vt+ - V -vt" + awt+ - awi-)

=2(w,,+wt+ +- v.,+vt+ +- awt+)  (4-17) I

Since this is the same coupling term that occurred for the pressure coeffi-
cient, it is zero. Thus to obtain the loading coefficient we need only
calculate (P,,+ - P,,-).

Having proved the principle of superposition for the pressure coefficient

and'loading coefficient, let us consider calculating 40 and P, first. The
function 0, is found as the real part of Wj(3) obtained from Eqs. (3-37),
(3-46), and (3-48) for the free-stream velocity Vo cos a along the body
axis (taken as unity).

Wt() = bo(:) + ao(t) loga

ao = 2-r (4-18)

&D = S(r ) log5'- flog (2 - )S"( ) d]

For a circular cone (Fig. 4-4) the values of ao and bo are

ao =-- 0o2

lB _ w2 (log - 1) (4-19)bo = ( 22 log - - c og t - 1
2

The real part of Wt(a) then gives the potential

Br
ot = W2t log -- - 02z(log t - 1) (4-20)

with velocity componentst i Br

!U 2 log U;

vt r,w cos0 (4-21)r

sin 0t/)g --- r~w -

r

The pressure coefficient from Eq. (4-11) is

= - 2 2 log- - (4-22)

2!

4
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The thickness pressure coefficients for circular cones as determined
from this equation are compared with the values in Fig. 4-4. The Taylor
and Maccoll' values are accurate to the order of the full nonlinear poten-
tial theory. Fortunately, the range of validity of slender-body theory is
broader in other cases than in the present connection. For bodies of
revolution a large number of approximate methods of varying degrees of
accuracy are available for calculating Pi. These methods are discussed
in Sec. 9-4.

0.10 1

2o.oo

0.04

0.02

Exact theory
-Slender.body theoryt 0

0 l 2 3 4 5
!; M o

FIG. 4-4. Thickness pressure coefficients for circular cones.

The separate effects of angle of attack are now considered. The per-
turbation velocity potential 0ka due to the crossflow velocity V0 sin a has
already been given in See. 3-2 for Vo = 1.

Oina = ar,2 Sin (4-23)r
The velocity components associated with 4. are

dr, sin 0
ua =2 ard xr

r sin 20
v. = -ar,2 - (4-24)

cos 20
Wa = ar,2  r2

On the body surface, r = r,, the pressure coefficient by Eq. (4-12) is

drP. = -4a sin 0 - a2(2 cos 20 + 1) (4-25)
d:
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The body of revolution need not be a cone. An examination of the
pressure coefficient shows in the first place a term proportional to the
product of angle of attack and rate of body expansion. The term is odd
in 0, thereby producing a body loading. In the second place we have a
term proportional to a2, and even in 0. Though this term influences the
pressure coefficient, it produces no body loading. A body loading is thus
developed only under the combined action of body expansion and angle
attack. For a cone of semiapex angle of the same order of magnitude as
a, the contributions of both terms to the pressure coefficient P, are
significant.

4-3. Slender Bodies of Elliptical Cross Section; Elliptical Cones

As an example in the application of slender-body theory to non-
circular bodies, consider the forces, moments, velocity components, and

ZR

V
0 C y

VOos 0,a b

FIG. 4-5. Axis conventions and notation for elliptical bodies.
pressure coefficients of bodies with elliptical cross sections. First, con-
sider gross forces and moments, and then velocity components and pres-
sure coefficients. The aerodynamic characteristics of noncircular bodies
depend on two independent variables: the included angle a,, and the bank
angle V, as shown in Fig. 4-5. Zero angle of bank is taken to correspond
to a vertical position of the major axis. Slender bodies of elliptical
cross section have been treated by Kahane and Solarskil and by FraenkelA

The general analysis is made for the body and axes as shown in Fig.
4-5. The x, y, z and x', y', z' standards conform to those of Fig. 1-2.
The complex variable 3 is y' + iz' in this section. Resolve the velocity
Vo into a component Vo cos ac parallel to x' and a component Vo sin a,
normal to x'. Let the complex potentials for the perturbation velocities
be W,(3) and W.(9). Then the total complex potential is

W(3) W(a) + Wa(3)
The question of coupling between thickness and angle of attack will not
be examined in detail for elliptical bodies as it was for bodies of revolution.
Instead we proceed directly to the calculation of the gross forces and
moments depending on TV(5).
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The complex force f + iZ given by Eq. (3-62) requires a knowledge of
W,(8), the perturbation complex potential for the flow- about a banked
ellipse due to angle of attack. With reference to Table 2-3, the complex
potential is

______t 
(a +b)'

W.() 2 Q, + - - + (+Q + C2)TJ (4-26)
=3 - g ag = --ice2 C2  W = (a 2 -

2i

Expansion of Wa(3) readily yields a,, the coefficient of the a-' term

(a,). iVoa [02 - (a + b) 2
1 (4-27)4

Now Eq. (3-62) has a term depending on S'(1)30 (1) which for bodies of
revolution is canceled by the contribution of Wt(a) to a,. For elliptical
bodies with ,S'(1) = 0 or with constant a/b ratio approaching the base,
it will be shown that similar cancellation occurs. Therefore, in these
cases we have

F(1) = F = ira[-(a2 - b2)e - Nv + (a + b)' - 2ab] (4-28)
qo qo

The lift Z and sideforce P are then given by

-- -2ra,(a 2 - b2) sin ( cospqo (4-29)
- 21ra (a2 sin 2  V + b2 COS 2)

qo

To show the cancellation of the ,S'(1)3(1) term when S'(1) is not equal
to zero but a/b is uniform approaching the base, consider the case of an
expanding ellipse of constant a/b ratio for a, = 0 and V = 0 as given in
Table 2-3.

Wi(a) = bo(x') + - log 2 (4-30)

The major axis is vertical, as shown in Fig. 4-6. To convert this complex
potential to the case a, not equal to zero, we must substitute 3 - a. for A.
To take into account the effect of bank angle, we must then substitute
(a - s,)e~' for (a - 3,). Thus for a, and p both not zero

W,(3) = bo(x') + x log { -(a - 3o) + [(a - 3g)2

+ (a' - b 2)e-14-13"- (4-31)

Expansion of Wi(3) yields the coefficient of the (-1 term

al)t =- )(4-32)
27r
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This term cancels the S'(1)30(1) term of Eq. (3-62), so that Eqs. (4-28)
and (4-29) are valid for elliptical bodies of uniform a/b ratio approaching
the base.

We can derive simple results for the moments of slender bodies of
elliptical cross section under the restriction that the body cross sections
are all of uniform a/b ratio. To do this we use Eq. (3-66) and carry out

r

x y

FIG. 4-6. Elliptical cone at zero angle of attack.

the integration. The uniform a/b ratio permits us to write

al(x') = (a,). + (aj)j 1 -ioW ab
4ir b a- 2  '

- + S(x') + (4-33)

The integral with respect to x' of a, then yields simple integrals in terms
of the body volume, regardless of the body shape, because a/b is constant.
The moments are given then simply as

MP = _ 21 sin2 o + b cos 2  S() 1 ) (4-34)

M, = -27rco(a 2 - b2) sin ( cos [ - Vol. (4-35)

Here a and b are the semiaxes of the base section for a body of unit length
with base area S(1). It is noted thatthe pitching inoment is Mg and the
yawing moment is -Mr.

I|
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The pressure coefficients Pt and P. will be separately evaluated without
regard for possible coupling effects. Since the angle of bank will not
influence the value of Pt, let the angle of bank be zero as in Fig. 4-6. The
velocities vt' and wt along the y' and z' axis can be evaluated directly from
Eq. (4-30), but the velocity ut' along x' requires a knowledge of bo(x').
From Eq. (3-48), bo(x') for an elliptical cone is

bo(x') = be log B _ ae folog d (4-36)2 a Jo4-6

Here -E is the semiapex angle of the cone in the plane of the major axis.
Actual evaluation of bo(x') is unnecessary since it will be differentiated by
x' to obtain ut'. The velocity perturbation components are

U' = RP [Wt(a)]
=d (4-37)
dzv; - iwt' = [,D

The carrying out of the integrations yields the velocity components,
which can conveniently be expressed in terms of the angle 5 illustrated in
Fig. 4-6. It is to be noted that the angle a is not the polar angle of the
ellipse.

abe cos8
a 2 cos 2 5 + b2 sin 2 5
a 2 cos""-b sin 2  

(4-38)

U ' b2 log B(a + b) (b/a)2 (a/b - 1)[(a/b) cos2 5 - sin 2 3]
a 4x' (a/b)" cos + 5 + sin2"

The angle 6 is such that
yt = b cos (
z' = a sin a (4-39)

The pressure coefficient due to thickness is easily found since the velocity
components are specified

b B(a + b) b 2(b/a)2Pt = -2 - e2 log -~ + -b 262 -b 6 +e (4-40)

a 4x' a +(b/a) 2 sin2  + cos 2  (

Let us now turn our attention to the determination of the velocity
components and pressure coefficient due to angle of attack. For this
purpose the complex potential of Eq. (4-26) is to be used, and neither a.
nor 9 is taken as zero as it was for the thickness calculations. We will
be concerned with the velocity components along the x', y', z' axes due to
angle of attack, namely, Ua', v.', and w,'. It is convenient to use those
axes-because the body cross sections are true ellipses normal to the x' axes
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(Fig. 4-5). Then we do not have to be concerned with any distortions of
the body cross sections from true elliptical shapes. The appropriate form
of Bernoulli's equation for the computation of the pressure coefficient for
the x', y', z' system is

P. 2(u.' + axw.')- [(v1) 2 + (U'T2  (4-41)

The lifting pressure coefficient depends on the rate of expansion of the
major and minor axes. In this development, the case of constant ratio
of minor to major axis will be taken. Some latitude in the shape of the
body is retained in that it need not be conical.

The velocity components have been calculated from Eq. (4-26) by
means of the formulas

u, = RP &W-0)
, , W (442)

Va/ - Wa
1 = dW(j)

The actual operations are lengthy, and the velocity components come
out in somewhat cumbersome form.

,/ + n da aa2 sin v cos 6 + b2 cos 0sin a\ (4-4,
a) ac\ /dx' a2 cos 2 a + b 2 sin 2 a 43

, a,(a + b)(a sin 2 
0 - b cos2 o) sin 3 cos 6

a 2 cos 2 6 + b2 sin2 a
+ a,(a + b)(a cos' a - b sin2 6) sin cos p (4-4Q
+ a2 cos 2 6 + b2 sin 2 3 (4.4.

Wa' -a,(a sin 2 0 - b cos 2 V)(a cos 2 6 - b sin 2 6)a2 cos 2 6 + b2 sin2 6
+ a,(a + b) 2 sin p cos 9 sin 3 cos 6a2 cos 2 3 + b sin2  (445)

The pressure coefficient due to angle of attack calculated from Eq. (4-41)
is also cumbersome:

I b\ daasi co b
2a, 1 + L (a2 i 9 -cos - b2 cos v sin 6)

P = a2 cos 2 3 + b2 sin2 6

+ a6
2[(a2 - b2) cos 26 - (a + b)I cos (2p - 26) - 2abI (4-46)

2(a2 cos 2 6 + b2 sin 2 6)

The angle 6 is measured from the minor axis, as shown in Fig. 4-6, even
when the ellipse is banked.

* We have neglected any questions of coupling between P, and P, for
elliptical bodies. Just as in the case of bodies of revolution, this coupling
is zero for elliptical cones. The thickness pressure distribution for an
elliptical cone is shown in Fig. 4-7. The pressure coefficient is greatest
at the end of the major axis, as would be expected.

Ii
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As a final subject under the general heading of elliptical bodies, the drag
of an elliptical cone will be evaluated

0.0 8- M -2 at zero angle of attack by direct

integration of the pressure over the
surface area. With reference to

0.06 Fig. 4-8, the drag D6 of an elliptical
cone can be written

D,.D! P, 2 dr (4.A7)

0.04 qd ( 2

where Pt is given by E ..

0.02

y'

0 1 2 3

y

Fo. 4-7. Thickness pressure distribution Fxo. 4-8. Notation for elliptical cone.
for elliptical cone.

The values of X and dr are given in terms of 3 as illustrated in Fig. 4-6.
ab

(b2 sin2  + ab cos 2 3) (4-48)

dr = (b2 sin 2 5 + a2 sin2 6)6 d5

Evaluation of the drag integral yields the drag coefficient (CD), for the
elliptical cone with the base areas as reference area:

D, b2 log B(1 + b/a) b 2 (4-49)
(CD c=~j -2 E2 log49aqorab =-2a 4 a

The angle e is the semiapex angle in the plane of the major axis.

Illustrative Example:

Compare the drag coefficient of circular and elliptical cones of equal
base area and length. Let the semiapex angle of the circular cone be W,
and let its drag coefficient be (CD),. Its drag coefficient from Eq. (4-49)
is

(CD), = 2c log - 2 -5
42
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The angles w and e are related for equal base area and length

2  b

a

The difference in drag coefficients then becomes

(CD). - (CD), = 2Wc log (1 + b/a)(a/b) (4-51)

Slender-body theory thus yields the interesting result that the drag of an
elliptical cone is less than that of a

1 circular cone by an amount inde-
0.08 .- 12 pendent of Mach number. The

drag coefficient increment given by0 06 . Eq. (4-51) is shown in F ig. 4-9 for
100 /8 various values of co and a/b. As

0.04 a/b increases, the elliptical cone

becomes more winglike and has
lower drag compared with that of

-- the equivalent circular cone. The
S 5 co, deg foregoing results must be interpreted, degin the lightthat slender-body theory

FIG. 4-9. Wave drag of circular cones i
versus elliptical cones. is valid only for small semiapex

angles. Also, the surface area of
the elliptical cone is greater than that of the equivalent circular cone and
therefore causes greater skin friction.

4-4. Quasi-cylindrical Bodies

One class of bodies not generally included within the scope of slender-
body theory is that class of bodies the surfaces of which lie everywhere

Az z

R

,'\x I y

FIG. 4-10. Axes and notation for quasi-cylindrical bodies.

close to a cylinder. The cylinder need not be circular in the general case
of a quasi-cylindrical body. We will, however, confine our attention to
quasi-cylinders, which lie everywhere close to a circular cylinder as in Fig.
4-10. Let the surface be defined by the local radius R which is both a
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function of x and 0
1?= R(Xo)

We shall be concerned with the slope of the surface in the streamwise
direction dR/dx, which can be expanded in a Fourier series as follows, with
coefficients which are functions of x:

dl - f,() cos nO (4-52)

n-0

Only cosine terms are retained on the assumption of a horizontal plane of
symmetry. The mean surface to which the quasi-cylinder is close is the
surface r = a, as shown. The problem to be solved is to calculate the
pressure coefficient in the flow due to the quasi-cylinder. For this pur-
pose the full linearized theory of supersonic flow is used, and the boundary
condition represented by Eq. (4-52) is applied on the r = a cylinder.

The method of solution follows, in principle, the Laplace transform
treatment of the wave equation, which is the basis of the slender-body
theory of Ward (Sec. 3-4). The potential 0 is the solution of the wave
equation in cylindrical coordinates (we assume that Afo - = 2 during the
derivation)

1 1
011 + 1 01 + 1 000 - 0.. = 0 (4-53)

Under the Laplace transform operation.

L(-) = = foW e-P(x,r,O) dx (4-54)
Eq. (4-53) becomes

1 1
~r i

r. + + - 1?e 7A1= 'q (4-55)

on the assumption that
c,(O+,r,o) = 0

a_5 (0+,r,o) = 0 (4-56)

The solution to Eq. (4-55) of interest here is that given by Eq. (3-31) con-

taining Bessel functions. However, the Bessel functions K,,(Pr) are the
only ones that should be retained, ah discussed in Sec. 3-4.

The solution of Eq. (4-55) then is

4) = n0 C.(p)K,(pr) cos nO (4-57)

where C'.(p) are functions of p to be chosen to satisfy the boundary condi-
tions. The boundary condition to be satisfied-is that the flow velocity at

-4
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the quasi-cylinder be tangent to its surface. The actual calculation is
made at the cylinder r = a. Thus

(04/Or)r.a dR o

= X = f,(x) cos nO (4-58)
n-0

Let L[f.(x)] F.(p) (4-59)

and evaluate Cn(p)- in Eq. (4-57) by means of the boundary condition to
obtain

Cn(P) = Vo01'(p) (4-60).()=pK.'(pa)

K.(pr)

so that 1= cosnoF(pK.'(pa) (4-61)

n=0

We are interested in obtaining the pressure coefficient as follows,

p = -2(0€/clx) - -2 L-I(pD) (4-62)
V0  V0

where L- 1 denotes taking the inverse Laplace transform. Before taking
the inverse transform, let us write Eq. (4-61) as

p( = Vo cos no F(p)-,(-' e(r-')K(pr) (4-63)
K.'(p)rJ (-3LI K-T +  -

where we have let a = 1 without any loss in generality. The technique
now employed is to split the expression into two parts, one dependent of
the boundary conditions as represented by F(p), and the other independ-
ent of the boundary conditions, as follows:

LU.(x - r + 1)] = F.(p)e- ' - 1) (4-64)

L[WK(x,r)] = ep( ' Kpr) 1 (4-65)K.'(p) +

The part independent of the boundary conditions represented by Eq.
(4-65) has been made the basis for the definition of a set of characteristic
functions W,(x,r). Assuming that these functions are known, we can
write the inversion of Eq. (4-63) by the convolution theorem that gives
the inverse transform of a product of transforms. We thereby obtain
the pressure coefficient from Eq. (4-62) as

Br + -a 1 z-Br+Ba (X -r

n-0 f( r/) a

Baa
n-O "I
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This result has been written for cylinders of any average radius for any
supersonic Mach number. The equation can be used to calculate the
pressure coefficient of any quasi-cylinder of nearly circular cross section
as specified by Eq. (4-52). The W,(x,r) functions required for the calcu-
lation have been tabulated elsewhere.4 The calculation is made by
numerical or graphical integration. In the reference the physical sig-
nificance of the W,(x,r) functions is discussed. They represent down-
stream pressure waves associated with a sudden ramp on the body
surface.

Illustrative Example

To show how Eq. (4-66) might be used, let us calculate the pressure
distribution on an axially symmetric bump on a circular cylinder as

tan - "

R

C

FIG. 4-11. Circular cylinder with axially symmetric bump.

shown in Fig. 4-11. The equation of the bump is taken to be
R=a+48x(1c _.A)

V? 4.(I 2 0+v O x :c (4-67)
d. 4 1-C0<~

=0 c<x

From Eq. (4-52) the f.(x) functions are

fo(x) 4 ! 1- 2x 0< _X<c

C1  X(4-68)f~z=0 n>0
f.(X) =0 n > 0

Only one term remains in the summation of Eq. (4-66) for the pressure
coefficient:
4)
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2 14 [1 2(x - Br + Ba)

B (r/a) t

-I-a f-Br+Ba4-2(-- W°£ T r-t B-+ r) d

0O<x_<c (4-69)

The pressure coefficient on the body has been calculated for several values
of B, and the results are expressed in the form of BP/r in Fig. 4-12. The
symbol r indicates the initial ramp angle as shown in Fig. 4-11. Of

2

Cr

00

.. l _______--___

0i.~2 0.2 0.4 0.6 0.8 1,0 1.2

Fr.41.Pressure distribution on circular cylinder with axially symmetric bump.

interest is the fact that pressure coefficient always starts off with a value
of 2r/B. Such a value corresponds precisely to the Ackeret value, the
value to be expected for the full linearized theory and two-dimensional

i flow. Since the flow is essentially two-dimensional to start, the result is
i :to be expected. However, as the flow continues downstream, it sees part

of the bump in its forward Mach cone as curved rather than on a flat stir-
face. If the bump had remained flat, we would continue to have only the

, first term of Eq. (4-69). The second term thus represents the influence of
~the curvature of the surface on which the bump is fitted. In this sense

the second term represents three-dimensional influences. If M0 is large,
the second term is small. Such a result is in accordance with the fact
that the upstream Mach cone has a narrow field of view and cannot "see"

, much curvatt of the body. As B approaches infinity, the upstream
i Mach cone "sees" only a planar strip of body so that the calculated
i pressure coefficient has the local two-dimensional value everywhere.

,i
I

B~j



AERODYNAMICS OF BODIES; VORTICES 85

VORTICES

1-5. Positions and Strengths of Body Vortices

The subject of this second half of the chapter is body vortices. The
appearance of vortices in the flow can cause significant departures
between experiment and inviscid slender-body theory. One of the most
direct ways of illustrating the effects of vortices is to examine the pressure
distribution around a body of revolution at high angles of attack.. Such

0.2

0 0 -0-0*

0.1-

Pct -0.1 000

00

ce -.2

,-0.3

""'Slender-body

theory

-0.4

-90" -60' -30" 0°  30' 60- 90-

0, deg

FiG. 4-13. Pressure distributions around body of revolution; comparison of theory and
experiment.

a pressure distribution taken from Perkins and Jorgensen5 is shown in
Fig. 4-13. In this figure the experimental pressure distribution is com-
pared with the theoretical distribution predicted by inviscid slender-body
theory, Eq. (4-25). According to slender-body theory, the pressure dis-
tribution on a nonexpanding body section is symmetric above aud below
the horizontal plane of symmetry; that is, the positive pressure existing on
the windward face of the body is also recovered on the leeward face of the
body. An examination of the data points reveals that no such pressure
recovery appears. In fact, somewhere near the side edge of the body the
pressure change ceases, and a fairly uniform pressure level exists over the
top of the body. The lack of pressure recovery is ascribed to the body

2
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boundary layer, which separates from the body with the resultant forma-
tion of a "dead water region" of more or .ess uniform pressure on the
leeward side of the body. The boundary layer itself rolls up into vortices.
Let us now examine the vortex formation in greater detail.

The general features of flow separation on bodies of revolution at
supersonic speed have been studied by Jorgensen and Perkins, 6 Raney,7

I
FIG. 4-14. Crossflow vortices of body of revolution.

d

20-

16" -

4"0

0 2 4 6 8 10

d
Fro. 4-15. Location of vortex separation for body of revolution.

and others. These features are illustrated in Fig. 4-14. As the boundary
layer flows from the underside of the body around to the leeward side, it
separates along a line of separation shown on the body. After separating,
the boundary layer continues as vortex filaments, which rise above the
body and curl up into strong body vortices on each side of the body. As
the body vortices proceed downstream, more vortex filaments originating
at the separation lines feed into the cores and increase their strengths.

I>
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One of the pertinent questions is: At what distance xs behind the body
apux do the body vortices first form? The distance will depend strongly
on the angle of attack; but, since the controlling phenomenon is boundary-
layer separation under pressure gradieats, the Reynolds number and
Mach number are also involv -d, as indeed is the shape of the body itself.
Some data exist' for the dependence of vs on a,. These data are repro-
duced in Fig. 4-15 for an ogive-cylinder combination at a Mach number of
2. At the higher angles of attack, the vor ices tena to originate at the
body shoulder. This is reasonable, since the expansion of the body in
front of the shoulder tends to thin out the boundary layer and inhibit

2.0

1.6

IVI
1.20

0.8 1

0.4 -____
o Ogive cylinder
a Cone cylinder (modified)

0 1 2 3 4 5 6 7

a
FIG. 4-16. Nondimensional vortex strengths for bodies of revolution.

separation. The precise location of vortex formation could not be ascer-
tained, but rather a region of vortex formation was obtained.

It is possible to obtain a nondimensional correlation of the strength and
position of the body vortex cores as a function of x and ao, on the basis of
certain plausible arguments. Consider the body vortices as seen in
planes normal to the body axis. Assume that the change in the pattern
of the flow with changes in x is analogous to the change in the flow pattern
about a two-dimensional cylinder with time if it is impulsively moved
normal to itself at. velocity V,. If zero time corresponds to the distance
xs, then time and distance are related by

-xa Vo = _Y'1t (4-70)
ao

The nondimensional parameter which characterizes the impulsive flow N
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Pia. 4-17. Vortex positions for bodies of revolution. (a) Lateral location; (b) vertical
location.
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is

(4-71)
a

By analogy the corresponding dimensionless number for our case is

N = ae(z - XS) (4-72)
a

If the analogy is correct, then the vortex strengths and positions in non-
dimensional form should correlate on the basis of N alone for different
values of x and a0.

The analogy has been tested,8 using data from Jorgensen and Perkins,8

and Raney.7 The measure of the nondimensional vortex strength is
r/27rVoaa,. This parameter is shown as a function of N in Fig. 4-16. A
rough correlation exists. It must be remembered that correlation is
hampered by experimental difficulties of measuring r. The vortex posi-
tions are simply specified by the nondimensional quantities yo/a and
zo/a. These quantities are correlated as functions of N in Fig. 4-17, and
the correlation is considered fairly good.

4-6. Forces and Moments Due to Body Vortices; Allen's
Crossflow Theory

Since the body vortices can significantly influence the pressure dis-
tribution, they will have large effects on the body forces and moments in
certain cases. It is our purpose now to present the theory of Allen for
such effects. The theory is based on the concept of the crossflow drag
coefficient (cd) 0 . If dNIdz is the normal force per unit length (viscous
crossforce per u iit length) developed normal to an infinite cylinder of
radius a at angle of attack a,, then the crossflow drag coefficient is so
defined that

dN ,
= (cd)(2a)qoa 2  (4-73)

The crossflow drag coefficients of a number of different cylinders have
been measured and are reported by Lindsey.9

By adding the viscous crossforce N, directly to the lift developed by a
slender body on the basis of slender-body theory, one has the basic results
of Allen's crossflow theory. 10 The total normal force or lift, since no dis-
tinction will be made between lift and normal force here, is then given per
unit length by

dN
~- 2=qoa .- + (Ca) qo2aac2  (4-74)

where S is the body cross-sectional area. Integration then gives the

!]

A -
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total body normal force

N = 2qoacSB + (od),qoa., 2So (4-75)

where SB is the body base area, and S, the body planform area subject to
viscous crossflow. The area So ', behind the body cross section corre-
sponding to xs (as given by Fig. 4-15, for instance). The tacit assump-
tion in the integration of Eq. (4-74) is that (Cd), is uniform along the body
length. There is some evidence that (cd), is not uniform," but an average
value of (cd)e. has been assumed. It is clear that the pitching moment
can easily be calculated since Eq. (4-74) gives the body normal force
distribution.

Ogival nose 4.75d long

M-2 -21d\

J \"
00.4

- 2 0.6-

/
1 - -o - - 0.8 - Experiment

d o Slender-body theory
.,,1'. - .... Cross-flow theory

I. I

0 8. 16' 24 1.00 °  8°  16 24*
oc, Oc, deg

Fio. 4-18. Comparison of measured and predicted body aerodynamic characteristics.

The lift coefficient and center of pressure of a body of revolution have
been calculated on the basis of slender-body theory and of Allen's cross-
flow theory. The calculated values are compared to experimental values
in Fig. 4-18. The actual body is of very high fineness ratio, and the
viscous crossforce for such a body is much greater than the lift predicted
by slender-body theory. The large rearward shift of the center of pres-
sure with increase in angle of attack is noteworthy. Generally speaking,
the lift predicted by slender-body theory acts on the expanding sections
of the body in front of the vortex separation region, and the viscous cross-
force acts behind the region of vortex separation. As the angle of attack
increases, the viscous crossforce increases approximately as a, while the
slender-body lift increases as a.,. The rearward shift of the center of
pressure is the result.
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4-7. Motion of Symmetrical Pair of Crossflow Vortices in Presence of
Circular Cylinder

Many problems of interest in missile aerodynamics require a detailed
knowledge of the vortex flow due to bodies or lifting surfaces. In this
section we will explore the behavior of a symmetrical vortex pattern of

two vortices in the presence of a circular cylinder. As pictured ir, Fig.
4-14, the vorticity is moving along the 1 plane
feeding sheets into the cores at, all Locus of
times. If we neglect any influence z F6ppl points

of the feeding sheets in comparison -rr
with that of the cores, then we can -- 1o + z
idealize the flow model as shown in
Fig. 4-19. Two external vortices
occur with equal vortex strength but
opposite rotation, and with the vortex
strengths changing with time. Inside
the body are located two image
vortices to insure that the body sur- a

face is a streamline. The right image
vortex h4 the opposite sense of rota- voat
tion of right external vortex but t
the same In -",tude; with a similar Fro. 4-19. Symmetrical vortex pair in
result for t' .J vortices. If the ex- presence of circular cylinder.

ternal ri- i x has position 3o, then the image vortex must be located
by the met- of reciprocal radii, namely, so that

a2

a2 (4-76)

where Si is the coordinate of the image vortex. The complex potential for
a vortex of strength r counterclockwise at position So is

- ir- rlog (a - ao)

The complex potential for the model of Fig. 4-19, including potential
crossflow and four vortices, is

W(s) = 0 + 4
~ ~ a 2r (3 - 3o)( + a/o)-iVo( - ir-log N + ;o)(A - a 2/ o)

A number of interesting special cases of the general case will now be

explored.
One question which might be asked is whether there exist combinations

of vortex positions and strengths for which the resultant velocities at the
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external vortices are zero. Such a question was studied by F5ppl.'2

The velocity vo - iwo of the right vortex is given by

Vo _,iwo =lim d [Wa +r Llg( ] 0

d 2 ir G 1w(D + +o

=lim -ivoac (+ + T V o

+ (4-78)-aV
+ a 2/go a + a2/ao~l(-8

The resultant velocities at the vortex are
VO -2 2 0e'V(Z0+ r zo z--(r°2----a 2

r-2a
2Vo4  + In[ -2 a 2  

-(ro
2  4a2y02]

r 1 yo +woaco~+ 2(o - 2 2)1 (479)
+ 2 2yo ro2 - a2 o 2  + 4ayo

where 3o = yo + izo = roeiOo (4-80)

The condition that v0 - iwo be zero leads to the condition, after eliminat-
ing the vortex strength,

(aolo - a2 )2 = obo(30o + ;o)2 (4-81)

After reduction to polar form, this equality yields
-a

2

rf - = 2rf cos Of (4-82)rf

The subscriptf has been used to denote the equilibrium or F6ppl positions
and-strengths. The vortex strength rf corresponding to r/ is

r- (r 2 - a2)2 (r" + a2) (4-83)
27rVo0  f

Ste Milne-Thompson" for details of the derivation. .Ae locus of the
equilibrium positions given by Eq. f4-82) is shown in Fig. 4-19. For
equilibrium positions far from the body the vortex strength is large, the
strength increasing in accordance with Eq. (4-83). One thing to remem-
ber is that, though the equilibrium positions are points of zero flow veloc-
ity, they are not stagnation points of the crossflow in the usual sense,
since the flow velocity changes discontinuously from infinity to zero as
the points are approached from any direction.

Another relationship of interest is that between the vortex strength
and vortex position when there is to be a stagnation point in the crossflow
on the body at the point specified by 3. = aeiO. The total velocity in the
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crossflow plane is

dW + -iaVo 1 1

1 1 \i3 - o _ + a2/ao) (4-84)

For zero velocity on the body at A.

r_ 1 + av/,2  (4-85)
27rVoac 1 1 1 1

3. +o 3, --7a 2/1 , -: o .+ a 2/ao

Manipulation of Eq. (4-85) and the requirement that r ia real yields

r
27rVoa

[y2(ro + a2/ro) - a cos (Do - O,)][j2(ro + a2/ro) + a cos (0 + 0,)]
W(ro - a 2/ro) cos Oo

(4-86)

For a given vortex strength F and stagnation point, Eq. (4-86) will yield a
curve on which the vortex must be located.

The actual streamlines in the crossflow plane of the vortices depend on
how the vortex strength varies with time. Actually to consider variable
strength of the vortices without inclue the feeding sheet leads to a
physically inconsistent model. One important case for which the vortex
streamlines can be found analytically is that for constant vortex strength.
If the function it' is the stream function of the vortex streamline, then

4, = od ayo + odZo
eyo Oo

= vo dzo - wo dyo

= IP (vo - iwo) d~o

Thus = IP f (vo - iwo) dao (4-87)

The integration with the aid of Eq. (4-79) yields

' 2, a I - 4rVoaaYO l (ro2  a2)2+4a~yoOJ (4-88)

= constant

The constant is to be evaluated from the knowledge of one point on a
particular vortex path. A different set of streamlines occurs for each

I value of the nondimensional vortex strength r/4rVoaa. For a value of

this parameter of unity, the vortex streamlines have the general pattern
shown in Fig. 4-20. Vortices near the body move downward against the
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flow, and those far from the body move with the flow. The F6ppl posi-
tion for the given value of the nondimensional vortex strength is included
in the figure. A region of circulatory flow exists about the F5ppl point.
The asymptotic lateral positions of the vortices at infinity y. shown in
Fig. 4-20 can be obtained implicitly from Eq. (4-88) as follows:

2y r logy.1, ( at ) I--( -a) (4-89)
a 2irVoa a Y 2  21rVoa yi2 + a2

For the general case in which the vortex strength is changing with time,
y yan analytical solution for the vortexz AY symptotes

3, path seems not to be generally
possible. In fact, a stream func-

+ tion for the vortex path in the usual
2 sense does not exist for this case.

To obtain the paths we must inte-
grate Eq. (4-79) numerically, using
small time increments. Another
problem which is also analytically
intractible except in special cases is

0-1 2 3 y the determination of the positions
yo and Zo as functions of the time.

r -1.o To obtain such relationships the
. Wocta following equations must be solved.

.Ivoac
= dyo _ dzo

FfG. 4-20. Paths of symmetrical vortex vo(Yo,zo) f Wo(yo,zo)
pair in presence of circular cylinder. (4-90)

The functions vo and wo are to be taken from Eq. (4-79). For the special
case of V0 = 0 and two symmetrical vortices as shown in Fig. 4-19,
Sacks, 3 has determined the time explicitly from Eq. (4-90).

4-8. Motion of Vortices in Presence of a Noncircuiar
Slender Configuration

Let us consider a pair of vortices not necessarily of equal strength in
the presence of a noncircular slender configuration as shown in Fig. 4-21.
The number of vortices considered is of no importance since the method
is valid for any number of vortices. The external vortices induce veloci-
ties normal to the body and panels. Single image vortices of the type
considered in connection with circular cross sections will not be adequate
in this case. In fact, a complicated image system is required. For this
reason it is easier to transform the body cross section into a circular one
for which the image system is known, and then to relate the vortex
velocity in the a plane to that in the plane (Fig. 4-21). e

Let W(o-) be the complex potential for the complete flow in the a plane.

~I
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With reference to Table 2-3 we have

* W(o)= -iVoa.' _ - . e21o). - r' log a
o / 2ir o- - r20

- 2 log - (4-91)- '-r.2

Let the transformation equations between the a and a planes leaving the
flow at infinity unaltered be

a . () = 3(o) (4-92)

The complex potential for the flow in the physical plane is now W(o(a)).

a=y+iz til

t : rl , 1 r , at

Y
Sr 1)

Mo. 4-21. Transformation of missile cross section into circle.

The vortices are transformed as vortices. Look now at the velocity
V1 - iw, of the vortex at a, in the physical plane.

v, ~ * - iw i W (a(w) + Lr o (a - a)] (4-93)

The velocity of the vortex in the a plane is denoted by pi - iq,

p, - iql lim Ar W(#) + 'lg( -a)(-4
do-- 27r

If we were concerned with the flow velocities at any point other than the
vortices, the velocities would be related simply by do-Ida in the usual
fashion of potential theory. However, the fact that the complex poten-
tials for the vortices in the a and a planes do not transform the same Way
as W(a) modifies the usual rule.

To relate the vortex velocities in the two planes let us rewrite Eq.
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(4-93) as

v-iw= lim d ((

r- -
4- 5

L- mlog (a - )- log (a - al) (4-95)

or v1 - iw1 = (pi - iq)- r + lira (i log -'---- (4-9)

The logarithmic term can be evaluated by differentiating and using the

Taylor expansion.

a =Ol +- 1'(a - SO) +- O (a -- 1)2 +- 0( - al) s  (4-97)

The Taylor expansion required is

S- (1 )a + +" - (a + 1)+0(& - 1)2 (4-98)

Th i limit is then simply

lim A log 3 - S - 1 dla/da2  
_I d23/da2  (4-99)

Sda 0* - 01 2 da/di 2, - dl- 2

The vortex velocity in the physical plane is now

V1 - -W * (Pi d2WOa~ (4-100)
dT 4-r d/dao

The term involving the second derivative arises as an addition to the first
term which would be anticipated if the vortex velocities transformed in
the same manner as ordinary flow velocities.

The calculation of v1 - iw1 for the vortices in the presence of a general
cross section will usually proceed streamwise step by step in a numerical
solution. The initial vortex positions and strengths r1 , a,, r 2 , and 32 are
given. The positions si and 32 are transformed into o-, and 02. Then the
velocity of the vortex in the transformed plane, p, - iqi, is computed by
the method of Sec. 4-7. The vortex velocity in the physical plane is
calculated from Eq. (4-100). The change in vortex position is then
obtained by assuming the vortex velocities uniform over the time or dis-
tance interval chosen for the calculation. The cycle is repeated in a
step-by-step calculation to establish the vortex paths. The vortex path
in the a plane is not the transformation of that in the 3 plane. Variations
in body cross section and in vortex strength are easily accounted for in a
step-by-step calculation.

4-9. Lift and Sideforce on Slender Configuration Due to Free Vortices

If free vortices follow their natural streamlines in flowing past a slender

configuration, the lift and sideforce due to the vortices can be established
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simply in terms of the vortex strengths and positions. Since a method
for calculating vortex paths was described in the previous section for a
slender configuration of general cross section, the possibility is at hand of
determining the lift and sideforce distributions along such a missile. It
is the purpose of this section to derive the necessary formulas in terms of
vortex strengths and positions. Consider a single free vortex of strength
r 1 developed by a vortex generator (Fig. 4-22), or any other means such
as body vortex separation. The vortex is free to follow the general flow
past the winged part of the configuration. Before starting the derivation

t P,

FIG. 4-22. Control areas for calculating forces and moments due to free vortices.

of the formula, it is desirable to determine the magnitudes of the lateral
velocities due to the vortex, and then to compare them with the magni-
tude of the velocities without vortices.

The complex potential due to a vortex of strength r, at j is

= ir 1 log (0 - Wi) (4-101)

2~r

and the lateral velocity components are given by

dW1  -ir4
01 - -w =d 27r(a - ji) (4-102)

The bars on V, and tD1 indicate that the velocity components are along the
and 2 axes. Equation (4-102) will yield the magnitude of the lateral

velocities if the magnitude of r is known. In this matter we must dis-
tinguish between wing-induced vortices and body-induced vortices. If
the vortex is body-induced, then with reference to Fig. 4-16

r] = 0 a (4-103)
27rIoace,



98 MISSILE AERODYNAMICS

where I is the body length. For unit body length

= 0(a2) (4-104)

Since the angle of attack is 0(t), and the lateral dimensions such as
(a - 1) are also 0(t), we find that 01 - i1i is 0(t) for Vo = 1. Here t is
the maximum radial dimension of the slender configuration of unit length.
For a vortex induced by a wing of semispan s. at angle of attack a., Eq.
(6-21) gives

o = 2acsm (4-105)
V0

Since the body is slender, s. is 0(t) just as a,. Equations (4-104) and
(4-105) show that the vortex strength is of the same magnitude for a
slender configuration whether body-induced or wing-induced. Thus, for
Vo = 1 both types of vortices produce lateral velocities 0(t) just as the
lateral velocities without vortices. What this means is that we can use
the order-of-magnitude estimates of Chap. 3 in developing formulas for
lift and sideforce due to vortices.

With reference to Eq. (3-58) and Fig. 4-22, the generalized force
?+ izis

---- = +21 dP , +ddW e° dS2

-2f .dS 0-O(t log t) (4-106)

To evaluate the forces requires a knowledge of the complex potential Wo
without vortices and W1 due to the vortices. The complex potential has
the general form

Wo = ao loga + bo + (4-107)
n-

and the complex potential due to the vortex plus its image is

W, = - log (a - 31) + Wi(a) (4-108)27r

Actually, the precise form of Wi(a) is hard to write down in the plane
unless the cross section is some simple shape like a circle. It is easier to
transform the missile cross section into a circle of radius r. in the a plane,
while leaving the field at infinity undisturbed. The transformations
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between a and a under these circumstances have the forms

a +d +(4-109)
rn-1 n-

We can now write the complex potential W1 in the o- plane explicitly

-i r G- 01
Wi(a(o-)) = -: log - (4-110)

See Fig. 4-23.
To make the complex potential single-valued, we must put cuts into

the planes. First, in W0(3) there is the log a term which is indeterminate

I
I _ _ _ __"_ _ _ _--_

Q1

/ ..

a plane a-plane
FiG. 4-23. Cuts and contours of integration.

to multiples of 27ri. The logarithm term arises because of sources within
the body cross section. Thus a source cut must extend from some point
within the body to infinity as shown in Fig. 4-23. So long as no path
crosses over the cut, the Wo(a) function will be single-valued. If any
path crosses the cut, then Wo(a) must be increased or decreased by 2Mriao,
depending on which direction the cut is crossed. If S'(.) is zero, no
logarithmic term occurs in W0(a). Two logarithms appear in the term
Wi(a). Actually, a vortex cut from oi to a, will render Wi(a) single-valued.
It can easily be shown that i is continuous crossing the cut but that 0',
has the value - r/2 on the right side of the cut and r/2 on the left side.

Examine now the integral over S3 given in Eq. (4-106). The area S3 is
enclosed by the contour QQ'MNP'PQ, which has been chosen to cross
over no cuts. Let the contour K be the outer circle of radius ri, let Co be
that-part of the contour next to the body, -let C1 be the contour consisting
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of segments QQ' and P'P, and let C2 be the contour segment MN. The
whole internal contour from Q to P is denoted by C, and

C = Co + C1 + C2  (4-111)

Applying Green's theorem to the area S 3 yields

f LW dS3 = i 'p da - ij 'p da (4-112)

The contour integral about K can be simply rewritten as

f s= i f nrei° dO d: (4-113)K 0 To=

and then introduced into Eq. (4-106) to yield

4 +iZ
qo 2i 

dd

-- -d d r, dO d t (4-114)
JooOr d; dS d;

Now 12 + iZ cannot depend on ri, and, since the first integral is independ-
ent of ri, so must the double integral be. The integrand of the double
integral is 0(1/ri) so that the integral approaches zero as ri --> co with or
without vortices present. We now have

_ = -2i da= -2i ,W d- 2 @ d  (4-115)
go

What has been achieved is that the quadratic integrand of the double
integral has disappeared, and the contributions to P + iZ are linear in
W. Thus, if P, + iZ is the contribution due to the vortex, an expression
for this quantity can be written down immediately

+ -2i c W d3- 2 e'd3 (4-116)
qo

The integral around C of W, can be distorted to K since W1 (3) is an
analytic function in S3, and K can be transformed into K, in the a plane.

SW1(a) d3 s Wi(a) da = i Uil(o)) .4da (4-117)
do-

where K, is in a large contour into which K is transformed in the a plane.
The expansions

dad 1+0(7)

=, ( (4-118)
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permit the contour integral easily to be evaluated by the residue theorem

SW,(a) da = 2ri (~i) (a - a)= -r(a., - a-) (4-19)

The integral around 0 of 0', is zero because , is constant on Co and is con-
tinuous across the cuts bracketed by the contours C, and C2.

Equations (4-116) and (4-119) thus yield the final result

? + iZ - 2ir(o- - ao) (4-120)
qo

If at - a is the point ylei' in the o- plane, the sideforce and lift are then

2r-- I - 22 sin 8,
q0 (4-121)
- = cos a,

These simple formulas provide a means of calculating the forces due to the
vortices up to any axial position in terms of the vortex positions and
strengths. However, their use presupposes a knowledge of the vortex
positions. Such knowledge is obtained by a step-by-step calculation of
the type described in the previous section. The effects of many vortices
may be found from Eq. (4-121) by superposition. Any coupling between
the vortex effects enters through mutual interference between vortex
paths. It is interesting to note that, if the contribution to a, of Wi(a) had
been introduced into Eq. (3-62) derived on the basis of no vortices,
exactly the vortex contributions found here would havo, arisen. Sacks 6

makes an equivalent statement. Also, Eq. (4-121) is obviously applicable
to the determination of the force between any two crossflow planes due to
one or more vortices, whether they originate on the missile or not.

4-10. Rolling Moment of Slender Configuration Due to Free Vortices

It is possible to derive a formula for the rolling moment developed by
free vortices passing a slender configuration in terms of quantities in the
plane of the base analogous to the lift and sideforce formulas of the pre-
ceding section. For convenience consider the same circumstances as
those prevailing in Figs. 4-22 and 4-23, except that in Fig. 4-23 transform
the body cross section so that the center of the circle falls on the origin in
the a plane. The pressure forces on control surfaces S2 and S3 do not
contribute to the rolling moment. Only the transport of tangential
momentum across areas S2 and Sa can cause rolling moment, and, of these,
it turns out that only Sa has a contribution. The rolling moment L' is

L' = +V 0
2 j pPok, dS 2 + V0

2 f p(l + €P)4e dS3 (4-122)
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with positive L' taken in the negative 0 sense, 2 - . Division by qo and
the use of the density relationship, Eq. (3-56), yields

+2 f ot-4 dS2 + 2 f 'O dS3 + O(t, log t) (4-123)
qo 1

To show -that the integral over S2 contributes nothing to the rolling
moment, rewrite the integral as

'IOOkr dS 2 = fo d fo2w riovo'k do (4-124)

The general form of the potential function including vortex effects can be
written in the following form convergent on a contour K enclosing the
vortices

' = ao log r + b0 n o r+ b sin no (4-125)
n-1

The source cut in this case is of no importance since 4, is continuous across
the source cut. The vortex cut is important for that part of € due to
vortices. On S the values of Oe and .0, can be calculated by differentia-
tion of Eq. (4-125). If the values of 'P and 0P, are substituted into Eq.
(4-124) and the integrations carried out, it is found that the integral is
zero.

Consider now. the contribution of the area Sa. At this point let us
confine our attention only to that part of the rolling moment due to the
vortex. This is now possible because the remaining integral in Eq.
(4-123) is linear in €. While the rolling moment due to the vortex can
be evaluated in terms of the vortex position in the base plane, all com-
ponents of the flow will influence this position. The surface integral
over S3 is taken over the area within the dashed contour in Fig. 4-23.
The area integral is converted to contour integrals by means of Green's
theorem

f d83  f 'd(r 2) - f Od(r 2) (4-126)

The contour C is composed of the part Co in proximity with the body, the
part C1 composed of segments PP' and Q'Q about the source cut, and the
part C2 comprising segment MN about the vortex cut. The integral
around K is zero since r is a constant. The stream function !' due to the
vortex and its image has a constant value on Co and is continuous across
C1 and 02, so that

libdr) 0 (4-127)

Thus, the integral over S3 for the part of 'P due to the vortex can be

• I
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written

f ~ dS, Id( + itL'i'd(r2) A W1(a)d(fl) (4-128)J8, ao B 2 T ' 2 y
The evaluation of the contour integral cannot be made directly by the

residue calculus because the integrand is not analytic. Let us transform
the contour C in the a plane into a circle of radius r. in the o plane with S,
at the origin.

so n d(4-129)
n

The field at infinity suffers a finite translation only. The coefficients d.
are usually complex, and the function f(a) can usually be written in finite
form for most cases of interest.

The integral about C can be broken up into two convenient parts with
the aid of the following identity:

a; = (a - a,)(;- 9) + (a3 + 3) - o (4-130)

With the following notation

1 =(4-131)

12 = - -

we see that 12 is the contribution when 8, = 0, and 12 is the additional
contribution when . is not equal to zero.

J dS = 11+ 12 (4-132)

Confine the analysis to the evaluation of 11 for the present. The integral
11 can be written

11 u ~4Wi(a) dy + z. / Wi(j) dz (4-133)

Also, since 4,1 is constant on Co and continuous across the cuts

4q d dz = 0 (4-134)

and I can be written

11 y RP 0C W1(3) da +-. 0  W1(3) da (4-135)

The contour 0 can be transformed-into the o- plane and then enlarged into -
a large circular contour D, centered on the origin and enclosing the body

and vortex cut. We can then expand the integrand in a series in a and

L I

--- ---------
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integrate term by term. In the a plane the complex potential is

-it= [log (0 - a,) - log (0. - 1)]36)
0,10"i = r62

The expansion valid on D is

27r-) (4-137)
T 1Zi(1) -2i(,)
n-1 =- n

Thus

9DWj()) da D~ [ 2 ~(Y
n-1 n-1

( -- n+) da (4-138)
rn-1

Since only the a- ' - term contributes to the integral

OD Wi(j(a)) da = -r(al - a) (4-139)

The value 1 is thus

I = -r[y, RP (a, - aj) + z, IP (a, - ar)] (4-140)

From Eq. (4-120)
2 1, i I ' (4-141)

2qor 2qor

so that I1 (4-142)

The evaluation of 12 requires different treatment from that of I,. It is
first decomposed into integrals over Co and C2 since the source at C, is of
no concern here.

12 = f Vi(a)d(3 - 3o)(; - &,) + f Wi(j)d( - 3)(; -

(4-143)

The integral along the vortex cut is easily evaluated since 0 = -r/2 on
the right side and- r/2 on the left.

f ,I(S)d(S - ,)( - ) = - - 2 -

- 2- 
M 2) (4-144)

I
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The integral around Co is transformed into an :ntegral about C', j = -r,
in the a plane. In the a plane generally

(8- ,) Q~ - 9,) =f(a)f0o) (4-145)

and on Go' in particular

(a - 8oM _ 90 (4-146)

By using the series of Eq. (4-129) we can expand tie produet in a Laurent
series

( ~ ~ - a)( ) a. \ +

n-1 rn-

= -L =r (4-147)

The coefficients kn turn out to be

k.= _. n positive
'-

0 -1(4-148)

dmdm n n negative
rn -- i

with d-i = I do = 0 d. = 0 m < 1 (4-149)

We shall confine our attention to those cases wherein the series converges
on Co', although its derivatives are of no r .cern.

The integral around Co' now becomes on integration by parts

) ° W1( )d(a - 3o)(3 -

- M 2 0 - 3 - ;,) dW, (4-150)

From the series expansion for (a - 3,)(; - ;,) and that for dW1/do

dW i+ i ( 2 )) (4-151)

n"I n-1
direct integration yields

2r + k-o-+-1 +-I- - (4-152)

~ -

n-i n1
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and

12 =- (X 2 - X 2) + f (ko - Xn 2) + n + -- ,-153)
n-1 n-l

wherein we have made use of the relationolMp

k-,= knre
- 2 .

1n (4-154)

The final result for the rolling moment is

L/- = +2(I1 + 12)
qo

0  + (o - 1
2) + V + .,n(4-155)

n-I

where Vo is no longer unity. It should be remembered that this result
contains any moment due to the vortex generator (Fig. 4-22). The roll-
ing moment between two crossflow planes can be found by differencing as
shown in the following example.

Illustrative Example

Calculate the rolling moment due to a free vortex of strength r1 as it
passes a triangular wing as shown in Fig. 4.-24.

This example is a case wherein the series are finite. The rolling

C_ y
,11

x-c plane o plane
FxG. 4-24. Free vortex passing triangular wing.
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moment is given from Eq. (4-155) as

L' L'N L'

The transformation taking the wing cross section into a circle with center
at the origin is

2

The values of the coefficients d. not identically zero are

d-, = 1 d, = r.

From Eq. (4-148) the values of k, not zero are

k-2 = I ke = 2r,2  = r.4

As a result the rolling moment is

(/P 2r.2 - lail) +"r. ( 1 1 + 2

The quantity a, is not independent of So. In fact, 3, is determined from

the initial position So by a step-by-step calculation of the vortex path.

SYMBOLS

a mean radius of quasi-cylinder
a, b major and minor axes of ellipse
ao(x) coefficient of log term in 0 expansion
a, coefficient of r-1 term in p expansion
(al)a part of a, due to angle of attack
a, coefficient of r-n term in € expansion
(a,), part of a, due to thickness
b0 additive function of :, in € expansion
B (M0

2 - 1)

o length of bump in circular body
crossflow drag coefficient

Cm coefficients in expansion for a
C2 

W  - b2)e-C-i(
(CD). drag coefficient of circular cone
(CD). drag coefficient of elliptical cone
CL lift coefficient

SC,(p) functions of p
d body diameter
d, coefficient i, expansion for ai

D, drag of elliptical cone

I
I1

------t- ~ - - - -
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f(x) functions of x specifying shape of quasi-cylindrical body
F.(p) Laplace transform of f.(x)
IP imaginary part
K caliber of tangent ogive
K, modified Bessel function of second kind
1 length of slender configuration
L length of tangent ogive
L, L- 1 Laplace transform operator, and inverse transform operator
V' rolling moment about 0 axis
MO free-stream Mach number
MV moment about g axis, pitching moment
MI moment about 2 axis, yawing moment
n number of Fourier component of quasi-cylindrical body
n,m summation indices
N dimensionless number for viscous crossflow; also normal force
N, normal force due to viscous crossflow
O(t) order of magnitude of t in physical sense
p variable of plane of Laplace transform; local static pressure
PO free-stream static pressure
p, - iql complex conjugate velocity of vortex r, in 0 plane
P pressure coefficient, (p - po)/qo
Ell pressure coefficient due to angle of attack
Pt pressure coefficient due to thickness (a, = 0)
P+, P- pressure coefficients on impact and leeward surfaces
AP loading coefficient, P+ - P
qo free-stream dynamic pressure
r, 0 polar coordinates
ro radius position of right external vortex of a symmetrical pair
ri radius of control surface
r711 radius of base of body of revolution
r. radius of circle in a plane
r,, 0 vortex polar coordinates in F6ppl equilibrium condition
r. local radius of body of revolution
r* r/rB for tangent ogive
/? radius of curvature of tangent ogive; local radius of quasi-

cylindrical body
sm maximum semispan of wing panel
S body cross-sectional area
S2, S3 control surfaces, Fig. 4-22
Sn base area of slender body
Sc body planform area subject to viscous crossflow
S maximum lateral dimension of slender configuration for unit

length; time
u, v, w perturbation velocity components along x, y, and z

4
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Ut, Vt, Wt perturbation velocity components due to thickness

U', V', w, perturbation velocity components due to angle of ttack
u/Y vt , I 1perturbation velocity components along x', y', and z'
vo - $wo complex conjugate velocity of right external vortex of a sym-

metrical pair
v, - iw1  complex conjugate velocity of vortex r in a plane
Vo free-stream velocity
V. velocity of flow normal to cylinder
Vol. volume
W complex potential, .- + iP
W, complex potential due to vortex r,
W complex potential due to image system of vortex r,
Wt complex potential at zero angle of attack
W. complex potential due to angle of attack
x, y, z axis systems described in See. 1-3
Xs axial distance to vortex separation points of body
x', y', z' axis systems described in Sec. 1-3
X* :t/L

:Z, 9, 2 axis systems described in Sec. 1-3
X°P axial distance to center of pressure
yo + izo position of right external vortex of a symmetrical pair
yi value of Yo when zo = 0
y.0 value of yo when zo = co
Y, Z forces along y and z
Y,, Z, forces due to vortex
Y7, Z forces along g and 2

y + iz
&o external position of right vortex of a symmetrical pair
al position of vortex r,
ag position of centroid of body cross section

internal position of right image vortex of a symmetrical pair
as position of separation point on body surface

included angle between free-stream direction and body axis
71 radial distance to vortex rP in a plane
r vortex strength
r 0  strength of wing circulation at root chord
r1 , r 2  strength of vortices
1' vortex strength of F6ppl equilibrium position
I'B strength of body vortices
6 polar angle in construction of ellipse, Fig. 4-6; also height of

bump on cylinder, Fig. 4-11
6, polar angle of vortex r1 in a plane
Esemiapex angle of elliptical cone in plane of major axis

variable of integration; also z - z,

4
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PO free-stream density
0 polar angle in 3 plane
0o polar angle of right external vortex of symmetrical pair
0S polar angle of stagnation point on body
X an elliptical distance, Fig. 4-8

X1 131i - 3,1
gM - 3g1, Fig. 4-23
variable of transformed plane

Ol, q2 positions of vortices P, and P2 in a plane
i -position of image vortex for P1

distance along tangent direction to body cross section; also
ramp angle

velocity potential
)Laplace transform of 0

stream function for complete flow
stream function for vortex path

o semiapex angle of circular cone
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CHAPTER 5

WING-BODY INTERFERENCE

The purpose of this chapter is to present methods for predicting the
aerodynamic characteristics of configurations formed by the addition of
lifting surfaces to a body. The lifting surfaces can be wing panels,
empennage panels, etc., and will be termed panels for short. The primary
focus here is on planar and cruciform wing-body combinations. By a
planar wing-body combination we mean one with two wing panels, usually
of the same shape and size, symmetrically disposed to the left and right
sides of the missile. By a cru-iform combination, we mean one with four
panels of equal size and shape, disposed around the missile 90' apart.
Configurations built up by the addition of panels of unequal size as in
an empennage are treated in Chap. 10. Traditionally in airplane design
the aerodynamic characteristics of the wing-body combination have been
viewed as dominated by the wing as though the body were not there.
For subsonic air frames where wing spans are usually large compared to
the body diameter, the traditional assumption can be defended. How-
ever, the use of very small wings in comparison to the body diameter,
which characterizes many missile designs, requires a different approach.
The point of view is taken that neither the panels nor the body necessarily
have a dominant influence on the aerodynamic characteristics of the ,ring-
body combination. Rather, the over-all characteristics result from the
body and wing acting together with mutual interference between each
other.

The chapter starts in Sec. 5-1 with an enumeration of the various
definitions and notations, and then in Secs. 5-2 and 5-3 takes up the sub-
ject of planar wing-body combinations for zero bank angle. The load-
ings, lifts, and centers of pressure are determined for the pressure fields
acting on the panel and body. In See. 5-4 the characteristics of banked
cruciform combinations are investigated. The influence of the angle of

* bank of the interference between panels is treated in Sec. 5-5 for both
planar and cruciform configurations. In See. 5-6 the results are summa-
rized for a complete wing-body configuration. The question of the
application of these results to nonslender configurations and a calculative
example illustrating the theoretical methods are the subjects of See. 5-7.
Finally, the chapter concludes with a discussion of a simplified vortex

112
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model of a wing-body combination useful for such purposes as calculating
the flow field about the wing-body combination.

5-1. Definitions; Notation

For purposes of wing-body interference, the wing alone will be taken to
be the exposed wing panels joined together so that no part of the wing
alone is blanketed by the body. Thus, when the exposed wing panels dis-
appear, so does the wing alone. The body alone is the wing-body com-
bination less the wing panels. Actually the precise definitions would

Forebodyor nose

Wingedsection

Afterbody

Fx. 5-1. Sections of wing-body combination.

require a specification of how the panels are parted from the body, but we
will forego this r6finement. The interference can be specified once the
wing-alone and body-alone definitions are specified. The interference
for any quantity is the difference between the quantity for the complete
wing-body combination less the sum of the quantities for the wing alone
and the body alone. For instance-the interference potential would be

Oi = 00 - (0W + 4)B) (5-1)

where the subscripts i, C, W, and B refer, respectively, to interference,
combination, wing alone, and body alone. If the wing-alone definition is
changed, it is clear that the interference will change since the character-
istics of the complete combination are independent of how the wing alone
is defined. The interference potential can influence part or all of the
body or wing. The values of 0, at the body surface account for the effect
of the wing on the body, and the values of €, at the wing surface account
for the effect of the body on the wing.

The various sections of a wing-body combination are illustrated in Fig.
5-1. For convenience, the various sections of the body are subdivided
into the forebody in front of the wing panels, the winged section of the body
with the wing panels, and the afterbody behind the trailing edge of the
wing panels.

.J
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Two sets of axes are of importance in so far as forces and-moments are
concerned. The axes x', y', z' correspond to the principal body axes of
symmetry for p = 0 but a, not equal to zero. The axes x, y, z are the
principal body axes under all combinations of p and a,. The forces on
the body due to the wing or on the complete configuration will generally
be referred to the x',y',z' system. The force along z' is the liftL; the force
C along y' is the cross-wind force; and the moment about y' is the pitching
moment. We will also be interested in the panel forces which, for ( not

equal to zero, are not conveniently
specified with respect to x', y', z' axes.
With reference to Fig. 5-2, the panel

CL /CZ normal force coefficient is denoted
(Cz)p (no panel deflection). The
panel hinge-moment coefficient is
denoted Ch, and the hinge line is

C C taken normal to the body axis at the
y same location as the pitching-moment

C/h reference axis.
Before consideration of the appli-

" cation of slender-body theory to
vo~o wing-body interference, it is probably

well to mention that wing-body inter-
ference problems can in certain in-
stances be solved by full linear

Fi. 5-2. Force and moment coefficients theory. For rectangular wings and
for panels-and complete configuration.

circular bodies, for instance, the
formal boundary-value problem presented by the full linear theory has been
solved.' Also, another solution for part of the interference field is given
by Morikawa. However, these methods are generally too complex for
actual engineering use, but they do serve as useful yardsticks for evalu-
ating more approximate but simpler engineering methods. One such
method is the essential subject matter of this chapter. A general survey
of the subject of wing-body interference has been presented by Lawrence
and Flax.'

5-2. Planar Wing and Body Interference

The utility of slender-body theory is never better exemplified thi,n in
its application to wing-body interference. From it we can derive the
loading -coefficients, span-load distribution, lift, and moment of a slender
wing-body combination, as well as the components of these quantities
acting on the panel and the body. Cofisider a planar wing and body
combination at zero angle of bank as shown in Fig. 5-3, for which the
perturbation complex potential will now be constructed. Let the body
radius a and the semispan s be functions of x. The complex, potential

I
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can be separated into two parts: Wi(a) due to thickness, which exists at
zero angle of attack, and W.(a) due to angle of attack. The part of the
perturbation complex potential due to angle of attack is easily found from
Table 2-3.

Wcg(a) = -iV0U:a~ + - 22] (5-2)

The complex potential due to thickness is precisely that due to the lody
of revolution taken to be the body alone. Thus the entire perturbation
complex potential for unit Vo is

da A-W(a) =bo(x) + a -lgA- ia + S2 + a (5-*3)

Since the wing panels have no thickness, they have no contribution to
Wt().

S y

t f Voa

Fo. 5-3. Planar wing and body combinationat zero angle of bank.

The velocity components entering the loading coefficients differ for the
wing and body. The velocity components ua, v', w, are those due to
JV,(3) with Vo of unity and a of unity. Correspondingly we have u,, vt,
wt due to W,($) The superscript + indicates the lower impact surface,
and - the upper suction surface. The loading on the body is not influ-
enced by thiskness effects as discussed in connection with Eq. (4-15).
Thus from Eq. (4-12)

(AP)B(w) = (P+ - P-)B(W)

= -2(u,+ + aw,+ - - awj) (5-4)

The symmetry properties of the missile yield

=a+ = -U.- Wa+ = w;-

so that (AP)n(w) = -4au, +  (5-5)
For the wing panel in the presence of the body, we have from Eq. (3-52)
(AP)W(B) = (PWa + Pi+.)W(B)

= -2[au,+ + ut+ + (aw2 + w,+)a]
+ 2[au + uj- + (awj + wi-)a]
- [(v,+ + av,,+)I + (w,+ + aW.+) 2]

+ [(Vy- + avj)2 + (we- + ow,,-)21 (5-6)-
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which for the following symmetries in the velocity components for the
wing

Ut+ = Ur v + = N7 wt+ = -w,-

U.+ = -ut - Va+ =- -V.- Wa+ = w - 1 (5-7)

yields (AP) W(B) =- 4aua+ - 4ava+vt+  (5-8)

We note that the wing loading has a quadratic form while the body load-
ing does not.

The velocity components needed to obtain the loading coefficients can
be obtained simply from Eq. (5-3). For the body we obtain

-2a da(1 +cos 20)+ T s (1 -- a +2-a-dj

+ TXs-I~-S/d s J d ) SdxJ
[(s + a2/s)2 - 4a2 cos2 0]

2a sin 20 sin 0
+ [(s + a2/s) 2 - 4a 2 cos 2 0]i (5-9)

- 2a sin 20 cos 0
[(s + a - 4a2 cos2 0]
da da.

g+ = cos 0 w + = sin 0
dx dx

For the wing the perturbation velocity components are

da a a2+(8+ a 2)[. 2) a da]-2a - I + 2 -
a =--[(s + a 2 /s) 2 

- y2(1 + a2/y 2)2]Jl

y(1 - a4/yl) (5-10)
-"+ = [(s + a2/s)2 - y2(1 + a2/y 2)2]'

Wa+=-IV1 4 ada wt+=O0y dx

where we have assumed that the wing has no thickness in calculating the
thickness velocity components. The loadings as obtained for the velocity
components are

4a
(AP)B(w) [(1 + a 2/S 2) 2 - 4y'/s2]6

a4 ds +2 a (1 + 2 Ya2 da] (5-11)

4ce
(5P)vB= [(1 + a 4/s 4) - (y2/s)(1 + al/y4)]

s + a ( 0  + (_a 2]

It is noted that the loadings on both wing and body depend on the expan-
sion rate of both wing semispan and body radius. It is interesting to
compare the loading for body cross sections of identical shape but for

f
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da/dx = 0 and da/dx 0 0. Such a comparison is made in Fig. 5-4, which
shows loadings on a combination of a triangular wing and a circular
cylinder, and a combination of a triangular wing and a cone. The influ-
ence of body expansion on the shape of the loadings is not important in
this case.

These loadings with da/dx = 0 are the same as those obtained by
Lennertz as a solution to a problem of minimum induced drag. The
problem, one of subsonic flow, is based on Trefftz plane methods. The
vortex wake is assumed to retain the general shape of the body in end

10

4 -

j~ 2s,,

2 __T

0 1 2 3 4

FIG. 5-4. Pressure differences at trailing edges of slender wing-body combinations.

view in moving backward to the so-called Trefftz plane. Here the cri-
terion of minimum drag is that the vortex wake move downward undis-
torted. Mathematically the problem is to solve the Laplace equation for
the cross section of the wake moving downward with uniform speed.
It is mathematically equivalent to the present problem with. no body
expansion. The details of the solution are given by Durand.A

Consider now the total lift of the wing-body combination as given by
Eq. (3-64). Let s. be the maximum span of the combination, and let a
be the accompanying body radius. Then the lift up to this axial station
comes out to be

L0 = 27ras,2 ( - + (5-13)qO S. 2

The lift includes that developed by the missile forebody. Actually, the
total lift of the combination is given by Eq. (5-13), independent of the
shape of the combination in front of the axial position for sin, or of the
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shape of the wing panels behind this axial position. The loadings given
by Eqs. (5-11) and (5-12) do depend on the planform through ds/dx, but
the total integrated lift does not. If the trailing edge of the panel is
normal to the flow at the axial position for s., then no question of lift due
to additional wing area behind this position arises. However, even if
wing area- with s < s does occur behind this position, no increased lift
occurs on the basis of slender-body theory. The reason for this behavior

is discussed in Sec. 7-1. Actually,
the trailing-vortex system from the

T panel trailing edge induces down-
s-S wash on the area, which just offsets

the angle of attack. The precise
. role of the body expansion is not so

clear. If the body is expanding up
to the axial position for s, then Eq.
(5-13) is correct. Body contrac-

C' -tion aft of this position may influ-
FiG. 5-5. Triangular wing and body ence the total combination lift, but
combination. ec h oa obnto it u

a consideration of this problem is
beyond the scope of the present work. In fact, we shall assume that the
afterbody is a circular cylinder in our succeeding discussion of wing-body
interference.

5-3. Division of Lift -between Wing and Body; Panel Center of Pressure

It is of interest to see how the total combination lift is distributed
between the panels and the body. For this purpose, assume that the
body is a circular cylinder so that we have no body expansion term.
Also, for purposes of definiteness, assume that the wing is triangular,
although this assumption will shortly be relaxed. With reference to Fig.
5-5 the lift on the panel is

L , 4atan fer8 dy f,./ta (1 - a4/s 4) dx
qo = y y/tan. [(1 + a4/s 4) - y2/s 2 (1 + a4/y4)]

(5-14)
One integration yields (one panel)

Lw( ) =r 4 . - a 2) 2 _ y +- dy (5-15)

The integrand gives the shape of the span loading. The span loading is
very closely elliptical, as discussed in connection with Table 6-1. Though
the integration has been carried out for a panel of triangular planform, the
span loading is independent of the exact shape of the panel for a slender
configuration. What follows is therefore valid for panels of general plan-
form. The total lift on the wing panels is conveniently expressed as a
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fraction of the lift developed by the wing alone Lw:

L,v = 2ra(s,. _ a)2  (5-16)

q0

The lift ratio is denoted by Kw, and the value as found from Eqs. (5-15)
and (5-16) is

LW(B)K~w =--

1) [Lr (X2 1)2±+(X2 + 1)2 in_ (J:ii 2

2(X 2 - 1)]

S= _ (5-17)
a

The lift ratio is a function solely of a/s,.

TA3L 5-1. SLENDER-BODY PARAMETERS FOR LOADING DUn TO PITCH*

a ya -a
SM Ywcru ( \c,/B(W) Sm -a

0 1.000 0 0.667(%) 0.500(3) 0.424(4/37r)
0.1 1.077 0.133 0.657 0.521 0.421
0.2 1.162 0.278 0.650 0.542 0.419
0.3 1.253 0.437 0.647 0.563 0.418
0.4 1.349 0.611 0.646 0.581 0.417
0.5 1.450 0.800 0.647 0.598 0.417
0.6 1.555 1.005 0.650 0.613 0.416
0.7 1.663 1.227 0.654 0.628 '0.418
0.8 1.774 1.46'7 0.658 0.641 0.420
0.9 1.887 1.725 0.662 0.654 0.422
1.0 2.000 2.000 0.667(,) 0.667(2 ) 0.424(4/3r)

* The accuracy of the tabulated results is estimated to be ± 0.002.

t Triangular panel.

An analogous lift ratio to Kw also serves to specify the lift on the body
due to the wing:

K L = B(W (5-18)
Liv

The lift on the body due to the wing is easily evaluated since
LB(w) = Lc - Lw(B) - LN (5-19)

where the lift on the missile nose LN is given by

L- 27raa 2  (5-20)
-qo
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The value of KB turns out to be

KB = (+I - Kw (5-21)

so that KB and Kw are both functions solely of a/s. They are given in
Table 5-1, and plotted versus a/sm in Fig. 5-6.

The values of KB and Kw shown in Fig. 5-6 reveal some of the salient
gross facts about wing-body interference. At a value of a/s of zero, tUe
value of Kw is unity because of the way in which Kw has been defined,
and KB is zero because there is no body. However, at the upper limit of
a/s of unity, the panels are very small and are effectively mounted on an

2.C infinite reflection plane. From the
potential Oa given by Eq. (3-19) it is

.6 -easy to see that the body produces a
local angle of attack along its side edge

1.2 of 2a, since the velocity here is twice the
.w velocity of the main flow normal to the

0.8 body. The wing panels therefore de-

K velop twice as much lift as they would

0.4 1_ at angle of attack a so that Kw is 2.
Thus, interference of the body on the
wing through upwash has increased the

0 0.2 0.4 0.6 0.8 1.0 panel lift to twice its usual value. As
a,"" a rough rule of thumb, Fig. 5-6 shows

FIG. 5-6. Interference lift ratios for that the fractional increase in wing
lift associated with pitch. panel lift due to body upwash is a/s,.
The parameter a/sm is thus the primary measure of the importance of
interference on lift.

The nature of the lift on the body due to the wing panels represented
by KB is of interest. Actually, the lift is entirely transferred or "carried
over" onto the body from the wing. The wing is the primary generator
of the lift, and certain of the lift is carried over onto the body because of
its proximity to the wing panel. For a very small panel and a very large
body that prevails as a/sm approaches unity, there is a large expanse of
body to "catch" the lift generated by the wing. This area accounts for
the fact that the body "catches" as much lift as acts on the wing panels
themselves, as a/sm becomes unity. The application of the ratios Kw
and KB to nonslender configuration is shown in Sec. 5-7.

In addition to the division of lift between body and panels, the center
of pressure of the panel is of some interest. The center of pressure of the
lift on the body due to the wing is significantly influenced by afterbody
length and is discussed in Sec. 5-6 where afterbody effects are considered.
The lateral center of pressure is denoted by (9a) w(n), and the longitudinal

position by ()W(B) measured behind the leading edge of the wing-body
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juncture. Since the shape of the span loading is given by the integrand
of Eq. (5-15), it is easy to write down the expression for ('9)W(B):

fa" [(,s + a2/s,) 2 - (y + a2/y) l y dy
( ) 3 = (5-22)f" [(s. + a2/sm) 2 - (y + a2/Y)'] dy

yielding

, ( )W 3  ( 1)2 [4x(x2 + 1)(X - X2 - i)K(k)

+ (X + 1)2(X4 + 1)E(k) + (X2 - 1)31 (5-23)

where K(k) and E() are complete elliptic integrals of modulus k.

(k1) (5-24)

The values of (f, - a) w(B)/(Sm - a) depend solely on a/s,, and are given

in Table 5-1. The lateral center of pressure does not depart significantly
from the value of 4/37r that is obtained for an elliptical span loading.
This result, independent of wing planform, really shows that wing-body
interference does not influence the lateral center of pressure appreciably.

It can easily be shown that the streamwise center-of-pressure position
is definitely not independent of panel planform, as is the lateral position.
For instance, to the extent that slender-body theory can be applied to a
rectangular wing panel, slender-body theory would place its center of
pressure on the leading edge. It is worthwhile calculating the center-of-
pressure location for a triangular wing to see what effect interference has
on the location as far as its axial position is concerned. The values of
(h/c ,)W(B) have been calculated from the loading of the panel as given by
Eq. (5-12). The calculation is not reproduced here, but the values are
given in Table 5-1. Actually, the variation in the value of (ia/cr)W(D)
from the value of two-thirds for the wing alone is very small for triangular
panels. In fact, the effect of interference on both the lateral and longi-
tudinal center-of-pressure positions can be neglected for most purposes on
the basis of slender-body theory.

5-4. Cruciform Wing and Body Interference

The load distribution and the lift and cross-wind forces will be calcu-
lated for a cruciform wing-body combination formed of a flat-plate wing
and a circular body. Actually, the vertical panels can possess a semispan
t(x) different from the horizontal panels, which have semispan s(x). As
shown in Fig. 5-7, the configuration is pitched through a, and banked by
angle V, so that the combination is at angle of attack a = a. cos p and at
angle of sideslip a , sin V. The fact we shall use to establish the flow
is that the flow field due to a will be unaltered by the presence of thedi
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vertical panels, and that due to 9 will be unaltered by the horizontal
panels. As a result, we need only compound two flow fields for a planar
wing-body combination at right angles to obtain that for a cruciform con-
figuration. This addition follows from the fact that potential functions
and flows can be added linearly in slender-body theory. We must, how-
ever, perform an analysis to see what happens to the pressure coefficient
under these circumstances.

To study the pressure coefficient, let us consider the total potential
function for the perturbation velocities
to be composed as follows,

/ -0= 4't + ao. + Poo~

w where 0, and Op are the perturbation

potentials for unit velocities in the a
- and f direction of Fig. 5-7. Then the

perturbation velocities are of the form

u=ut+au+#up (5-25)

The form of the pressure coefficient
-t/ oVo V0 9equation appropriate to the present

Voa problem is

P = -2(u + aw - Pv) - (v2 + w2)
(5-26)

FIG. 5-7. Axis systems for cruciform where the velocity perturbation com-
missile under combined pitch and ponents are along the x, y, z axes. Let
sideslip. us now apply Eq. (5-26) to calculating
the loading on the right horizontal panel given by P+ - P- or (AP)p.
The perturbation velocity components possess the following symmetry
properties and boundary values for the wing panel (with panels of no
thickness):

U+ = ur vt+ = vt- W+ = -w O 0
ua + 

= -U"- va+ = -va wa+ = - 1 (5-27)
W = uf V+ = Vf = - = 0

From these values it is easily established that

(AP)p = -4aua + - 4av,+vt+ + 4aflva+(1 - v+) (5-28)

The first two terms correspond precisely to those for a planar configura-
tion as given by Eq. (5-8) for V = 0. The loading of the cruciform con-
figuration is thus the same as the planar configuration for (p = 0. For
p not equal to zero an additional term arises: a term proportional to a#.
This third term represents the effect of bank angle on the panel loading.
Its nature is discussed in the next section for both plane and cruciform
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configurations, and it is termed the a coupling term. Note that it is
asymmetrical from left to right.

The velocity components involved in the panel loading, u,+, v,+, and
vt+, have already been given in Eqs. (5-9) and (5-10). The remaining
velocity component vf+ can be obtained from Eq. (5-3) by appropriately
interchanging v and w.

+ = ~ - (y/t)(1 - a4/aj4)
V4+ = [(1 - a4/t4) + (y2/t 2)(1 + a4/y4) T + 1 (5-29)

The complete loading for the right horizontal panel is now

4aco (S - ) + ad [2 (a2)+ (I a2)

(Ap)p [(1 + a 4/8 4 ) - (y 2/s 2)( 1 + a 4/V 4)]

+ I 44(y/s)(y/t)(1 - a4/y 4)2 ac2 sin p cos v (5-30)
+K [() i) l+ (I a!,)7

Because of the second term the normal force on the right panel is increased
as it moves downward with positive (p, and the upgoing left panel lose
the same amount of normal force. It is clear that the loading call be
obtained on any panel from Eq. (5-30) by changing bank angle or i-tor-
changing s and t.

A similar analysis of the loading can be carried out for the body.
However, the boundary conditions for the body result in different relk-
tionships for the velocity components than for the wing panels. Wit~i
the symmetry properties of Eq. (5-27) (but not the boundary values), the
loading on the body becomes

(AP)B(W) = -4au+ - 4a(wt+ + V,+vt+ + w,+wi+)

- 4ag(w + - v,+ + v,+vp+ + w,+W-+) (5-31)

The second term is zero since the velocity in the crossflow plane
due to thickness vt + iwt is perpendicular to the velocity due to a,
lava+ + ia(1 + w +)]. The first term exists at all bank angles and is the
same term given by Eq. (5-5) for a planar wing. The third term is the
coupling term for the body loading analogous to that for the panels. The
velocity components v + and wa+ occurring in the coupling term are given
by Eq. (5-9) as for a planar configuration. The velocity components ve+

and w+ are easily obtained from symmetry considerations from the
results for vt+ and w +t.

2a sin 0 sin 20
- [(t + a2/t) 2 - 42 sin 2 01,1 + (

2a sin 20 cos 0 (5-32)
we = (t + a2 /t) 2 - 4a2 sin 2 015
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The body loading is

E( 4\ds 2  a 2i+ - 2A dal
4cecos p l- 3 4) r +2 2 2 ai) TX

(AP)B(w) [(1 + a2/s 2)2 - 4y2/s 2] i

+ 64(y/s) (y/t) (1 - y2/a 2)a. 2 COS p Sin 1P (533)

The body loading contains in the first term a part proportional to rate of
body expansion and a part proportional to rate of change of wing semi-
span. However, neither of these quantities influences the loading associ-
ated with combined pitch and sideslip.

With regard to the total forces on a cruciform configuration, it has been
noted that the coupling term proportional to aft caused as much increase
in loading on the right panel for positive ( as it caused decrease on thie
left panel. Likewise, the coupling term in Eq. (5-33) causes a similar
situation with respect to the right and left halves of the body. In conse-
quence the coupling terms produce no net lift but only cause an asym-
metrical loading. The total force on the configuration can be calculated
by adding the forces due to two planar configurations at right angles just
as the flow can be similarly constructed. This is true since the gross
forces are independent of the coupling terms. Thus, the force Z along
the z axis is from Eq. (5-13)

Z = 27 ,CeS 2 1 - + a 
(

s2 T (-3)
Y 2a4((5-32a4)

Y = -2rt,21 .- +

The lift in the z' direction (Fig. 5-7) is

L =Z cos V - Y sin V

which for a true cruciform configuration, s. = t
m, becomes

L = 2racs,2(1 - T (5-35)

and the cross-wind force along the y' axis is zero. It is seen that changing
the bank orientation for a constant value of a. does not change the lift
force, nor does it develop any cross-wind force. Thus, as the missile
rolls, it will continue to develop lift in the plane defined by the relative
wind and the missile axis. This characteristic, an important property of
the cruciform configuration, is also true of the triform configuration.

The aerodynamics of slender cruciform configurations have been
studied by Spreiter and Sacks.5
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5-5. Effect of Angle of Bank on Triangular Panel Characteristics;
Panel-Panel Interference

For a cruciform or planar wing-body combination, banking the mis-
sile in a positive direction introduces an additional loading on the right panel
proportional to a#, and subtracts a like loading frora the left panel. The
amount of asymmetric panel loading so produced is given for planar and
cruciform configurations by the third term of Eq. (5-28). For cruciform
configurations, the loading is given explicitly by the second term of Eq.
(5-30). It is the purpose of this section to evaluate the asymmetrical
panel normal forces due to bank angle. The difference in the results for
the planar and cruciform configurations is an illustration of panel-panel
interference.

Consider now the second term in Eq. (5-30) for the loading and desig-
nate it by P,.

4a.2 sin ' cos V(62 - 1)2r(P, = azr_3)(3 _) (5-36)
3(2- 62)31(6 2 r2 -1)1

32  ---Y2

with T = aS (5-37)

With the notation of Fig. 5-5, the total normal force on the right panel
due to P, is

I dy IP,dsqo tan J 
a2cl 2 sin 4' cos f(e./) (52 - 1)2 d

tan e 
d3

ri dr
(--2 - 1)3 (5-38)

The integration with respect to r yields elliptic integrals

AZp aaC2 sin V cos ,p f(s.'a)2 (
82 - 1)j

q0 = tan e , 26 3 - F(, t,k) + F(IP2,k')] d3 (5-39)

wherein
(s,/a)(6 - 1) k2 - (8 + 1)2
(s 2/a 2(32 + 1) (54)

COS 2 (s./a)(6 + 1) k (8 - 1)
(3. 2/la2 + 1)68= 2(62 + 1)

A further integration to obtain the panel normal force appears formidable,
and the evaluation has actually been performed numerically. The
normal force Zp is conveniently made nondimensional in such a way that
it is specified by a lift ratio K¢, depending only on sm/a.

K ,AZ tan e (541)

Zp j
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.I/ere Z4 is the normal force on the panel as a part of the wing alone at
angle of attack a.

Z_ = i (s, - a) 2a(5-42)
Q0

Equations (5-38), (5-41), and (5-42) give

I f(s./a)2 ( -_ 1)i
K, = '(s/a - 1)2- [F( ,P,k) + F(02,l')] dS (5-43)

for a cruciform wing-body combination.
0.8

K"0.4

0.21 "1

0 0.2 0.4 0.6 0.8 1.0.

a

Fia. 5-8. Interference lift ratios for loading associated with bank angle.

For a planar wing-body combination the expression for K, can be deter-
mined in the same fashion as for a cruciform combination. The loading
coefficient due to a#3 is obtained from the second term of Eq. (5-30) with
t = a. The equation for K,, is

2 f€../, (a _ 1)(82- 1)
K, 7r(s/a - 1)2.ji 53

tanYa.i (I2aS . )%S (5-44)

The values of K, are tabulated in Table 5-2 for ready use and are
plotted in Fig. 5-8. The difference in K, between the planar and cruci-
form cases is associated with a form of panel-panel interference. In Eq.
(5-28) it is seen that the force associated with K, depends on a coupling
between the sidewash velocities v. and vp due to angles of attack and side-
slip. The presence of the vertical panels between the horizontal panels
in the cruciform apparently has the gross effect of diminishing the
coupling and reducing the value of K,,. In the illustrative example
which follows, the nature of K,, for a triangular wing will be explained,
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but first let us consider the center of pressure of the loading associated
with K..

The centers of pressure associated with the K, loadings of planar and
cruciform combinations with triangular wings have been calculated
numerically and are listed in Table 5-2. The centers of pressure so

TABLE 5-2. SLENDER-BODY PARAMETERS FOR LOADING DUE TO BANK;
TRIANGULAR PANELS*

Planar Cruciform

a
M K,,- a K, g, - a

-(B) Sm a \Cr/ w(n) sm - a

0 0.637(2/r) 0.667(%) 0.524(r/6) 0.382 0.667(2j) 0.556
0.1 0.687 0.667 0.518 0.447 0.654 0.532
0.2 0.681 0.677 0.531 0.490 0.660 0.530
0.3 0.649 0.688 0.546 0.508 0.673 0.540
0.4 0.597 0.699 0.560 0.502 0.687 0.554
0.5 0.529 0.709 0.575 0.471 0.700 0.569
0.6 0.447 0.719 0.588 0.417 0.714 0.585
0.7 0.352 0.729 0.601 0.342 0.725 0.598
0.8 0.246 0.736 0.614 0.244 0.734 0.612
0.9 0.128 0.744 0.616 0.127 0.743 0.625
1.0 0 0.750(y4) 0.637(2/7r) 0 0.750(Y4) 0.637(2/ r)

* The accuracy of the tabulated lesults is estimated to be ±0.002.

calculated are useful for predicting the variation with bank angle of the
rolling moments and root bending moments as well as the panel hinge
moments. Comparison of Tables 5-1 and 5-2 shows that the migration
of panel center-of-pressure position with a/s, is much greater for the K,
panel force than for the Kw panel force. No integrated results are pre-
sented for the loading on the body which is asymmetrical with respect to
the vertical plane of symmetry. It is clear that the body loading has no
net effect on body normal force, rolling moment, or pitching moment.

Illustrative Example

Let us examine the variation of the force on the panel of a triangular
wing as it sideslips at constant angle of attack. Calculate the fractional
change in the panel force, and compare it with the change computed on
the basis of slender-body theory using K,.

With regard to Fig. 5-9 consider a triangular wing with no thickness of
semiapex angle e, at angle of attack a and angle of sideslip p3. The

* pressure of distribution on the wing is conical with respect to the apex,
and the loading of the right panel is greater on the average than that of
the left panel for positive sideslip. The change in the panel force with
sideslip can be calculated on the basis of linear theory from the results of

~I
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FIG. 5-9. Triangular lifting surface at combined pitch and sideslip.
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FIG. 5-10. Change in loading of panel of triangular wing due to sideslip.

A. L. Jones and A. Alksne.9 The results for the pressure distribution
have been integrated to obtain the panel normal force coefficient (CZ)P.
Let (ACz)p be the change in force coefficient due to changing the angle of
sideslip for 0 to p. Then (ACz/Cz)p is the fractional change in panel
force due to sideslip. Normalize the sideslip angle by forming the param-

.1(
! I

gI

-I
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eter tan #/tan e. Then, for a value of the parameter of unity, the left
side edge is streamwise. The values for the triangular wings are shown
in Fig. 5-10 for two different conditions. For tan e = 0.5 and Mo = 2.0,
the right edge becomes supersonic for a few degrees of sideslip. Actually

, the force gained by the left panel is not precisely counteracted by the
force lost by the left panel, but the balance is nearly precise.

Let us now apply the K, factor to calculate the panel force on the basis
of slender-body theory. From Eq. (5-41) the force coefficient ratio is

(ACz) 
(5-45)

Let us substitute tan fl for P so that
tAcz tank-C-z = K tane (5-46)

The meaning of K, is now clear since it is the slope of the curve shown in
Fig. 5-10. For a planar wing Table 5-2 yields a value of K, of 2/7r. The
straight line shown in this figure has this slope and therefore represents
slender-body theory. It is surprising that slender-body theory fits the
results of linear theory so well when the large semiapex angles and angles
of sideslip are considered.

5-6. Summary of Results; Afterbody Effects

The previous results apply as derived to slender planar and cruciform
wing-body combinations. It is the purpose of this section to gather
together the results into a compact form for application to actual missiles.
The formulas are illustrated by application to a cruciform missile under a
banked condition in the next sectioz Before summarizing the results,
let us note that the panel forces andmoments are not all referred to the
same axes as the forces and moments of the other components. The two
axis systems and the corresponding notations are given in Fig. 5-2. For
simplicity, the hinge axis of the panel is assumed to have the same longi-
tudinal position as the center of moments. Transfer of hinge moments to
any other axis can easily be made. The results for the right panel apply
to all panels since the bank angle is arbitrary.

Planar Configuration

Forces and moments of right panel:

(C l)p = /w aCos + - 2C da 2Si CSd0 Ko- a2 sin cos

1dCL\ (: .)W(D(Ch)p = -Kw \2 do j 4 a cos o

K, (1 dL2tn (, " X )w 4 , sin cos o (5-47)
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(COP -K-/1 dCL\ (9.) W(B)a os(

"K (1 dCL\ (i,)W(B) 2

(aE .2 d1, sin 1p cos ifp

Forces and moments on body due to wing:

(CL)B(w) = KB (iCL) a COS29

(Cc)Bo~v) = KB (dCL )w C sin 9 cos (5-48)

(Cm)B(W) KB (dCL\(;)B(W)a o 2 9

(CI)B(W) = 0
Forces and moments of complete configuration:

(CL)C = (CL)NV + (CL)Bov) + Kw (CLX Ce cos 2 9

(CO=(Cc)zv + (Co)B(W) + KWv a. sin 9,cos

(Cm)C (Cm)N + (Cm)B(W) - K,, iiL :t)WB)C

Kwa OSCO 9
(C1)0 = c~ c

Cruciform. Configuration
Forces and moments on right panel:

(Ch)p

(COP~ Same analytical form as Eq. (5-47)
Forces and moments on body due to wing:

(CL)B(w) KB (dCA ac
(CC~n~w da,)w a

(C) B(W) -K0 dL ~Dw (5-50)
(C),(W -B\da,)w 1, '~

(CI)Bcw) 0
Forces and moments on complete configuration:

(CL) o =(CL)Nv + (KB + Kw) ( -cl)w a
(CO) C 0 

.. (5-51)
(C.) (Cm)Nv [Kn( )Bcw) + Kw(:)w(B)j (dCL\a

4 cida jW'

T ______________0_
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The quantities due to the missile nose can be calculated by any method
applicable to bodies alone.

The results for the over-all forces and moments on the cruciform missile
show several interesting properties. First, the resultant force is inde-
pendent of bank angle in magnitude and direction, being always in the
plane of c. Second, the rolling moments of the individual panels add up
to zero. These two factors produce an air frame, the characteristics of
which are independent of bank attitude in contrast to a planar wing-body
combination. The technological importance of the cruciform configura-
tion is associated in part with this result.

Before discussing the application of the foregoing formulas to an actual
nonslender case, let us be concerned
with the values of the lift ratios and
centers of pressure to be used in the
theory as given in Tables 5-1 and 5-2. -I", >- -- ,-. ,

Actually three lift ratios are con- ..-

cerned:K,, Kw, and K.B. The values "r
of Kw and Ka as derived do not de-
pend on the wing planform although
K, does. Nevertheless, as a first ap- 2-Ba

proximation to the afl coupling term, - 2

it is believed that K, can be used for Fin. 5-11. Transference of lift from

panels other than triangular. With wing to body.

regard to the panel center of pressure, the values of : and 9, are very
close to the values for the wing alone for the triangular panels considered
in the derivation. Actually, the value of V,, does not depend on the
planform and should apply to panels other than triangular. For panels
other than triangular, it is recommended that the center of pressure of
the wing alone be used for X, since wing-body interference has little effect
on panel center of pressure for a triangular panel. For rectangular
panels some linear theory calculations are given by Pitts et al.6 to show
the effect of wing-body interference on x. for a rectangular panel. At
worst, interference causes a few per cent forward shift. The values of
the center of lift on the body due to the wing are open to some criticism
when calculated by slender-body theory in certain instances. Let us now
consider afterbody effects from the point of view of Ku and (-%)B(W).

For slender configurations, the length of the body behind the wing
should not have an important effect on the body lift or center of pressure.
'However, for nonslender configurations, the existence of an afterbody
can have a large influence on the values of Ku or (%).8(w). In slender-
body theory it is assumed that the loading on the body due to the wing
carries straight across the body diameter along AA as shown in Fig. 5-11.
Actually the pressure waves travel around the body and follow the
helices intersecting the parallel generators of the body at the Mach angle.



132 MISSILE AERODYNAMICS

The pressures on the body are thus transferred a distance downstream
anywhere from zero at the juncture to 7rBa/2 on the top of the body.
The importance of this effect depends among other things on afterbody
length and Mach number. Behind the Mach helices from the wing trail-
ing edge, the wave system from the trailing edge causs a decrease in
afterbody loading. A swept trailing edge further complicates the prob-
lem. An approximate model for calculating the loading and center of
pressure on the body is shown in Fig. 5-12. The body is assumed to be
planar and to act at zero angle of attack to "catch" the lift developed by

[ Lift catching area; a O

tan-' m I

(a) (b)
FIG. 5-12. Planar models for calculating afterbody effects. (a) No afterbody; (b)
afterbody.

the wing. If no afterbody is present, the loading on the body is inte-
grated only over the region in front of the trailing edge. However, if the
trailing-edge Mach waves intersect on the afterbody, the region in front
of the waves is considered to be effective in lift.

The pressure field due to either panel is considered to be the pressure
field of. the isolated panel. With reference to the coordinate system of
Fig. 5-12, the pressure field for a supersonic edge is (Eq. 2-33)

2 am -Cos-' /B + mBn (5-52)
7r(mB21 - 1) 7 + M5

and for a subsonic edge7 is
I 4w(Bn)9  (a/B_--

P = 4aw+Rn)h t\m -q\ i (5-53)

In the application of these fields to the wing-body combination, it has
been assumed that the Mach wave from the leading edge of the wing tip
falls behind the trailing edge of the wing-body juncture. This assump-
tion, which insures that no tip effects fall on the lift-catching areas, leads
to the condition

BA(I+ X) + >4

The values of KI and (9a/c,)(W) calculated on the basis of the planar
models are shown in Figs. 5-13 and 5-14. It is apparent that the effect

ft
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7, I - Vs -a

-4 -S tan- nt'N A (,.a

+ 4 sS 1 I I

0.8 - -r C.-.
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2Ba

C,
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of the afterbody depends principally on the value of the parameter
2Ba/c. For large values of the parameter the large lifting-catching area
behind the wing trailing edge causes larger values of KB and more rear-
ward positions of the center of pressure. The importance of afterbody
effects increases with Mach number if the afterbody is sufficiently long so
that more afterbody area falls in front of the trailing-edge Mach helices.

0.7

0.
0.61t -I -----

0.5
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Cr

(a)
2.0m

1 0.1
1 .6 ------------

1.2
0800

0.4
0 0.4 0.8 1,2 1.6 2.0 2.4 2.8

2Ba
C,

(b)
Fio. 5-14. Values of (9a/C,)B(w) based on planar model. (a) No afterbody; (b)
afterbody.

5-7. Application to Nonslender Configurations; Calculative Example

The results for the forces and moments summarized in the previous
section depended on the quantities read from either Tables 5-' tnd 5-2 or
Figs. 5-13 and 5-14. However, it is noteworthy that th forces and
moments, with the exception of those due to the missile nose, are all pro-
portional to the lift-curve slope of the wing alone. The theory was
deliberately set up in this fashion; that is, all interference lifts were
normalized by the lift of the wing alone. As long as the wing-body com-
binations are slender, the formulas apply without much question. But,
if the wing-body combinations are not slender, can the theory be applied
with any confidence? It turns out that the answer is yes for the following
reasons. It is reasonable that the ratio of the interference lift to the
wing-alone lift will be better predicted for nonslender configurations than
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the absolute magnitude of the interference lift itself. In fact, if it is
assumed that lift ratios and centers of pressure are accurately predicted by
slender-body theory, then the foregoing formulas apply directly to non-
slender configurations, provided an accurate value of the lift-curve slope

3.75 S

3.75
3.25
2.75

_ 2.25
1.75
1.25

3.C
7 A- VSlender-body theory

030
._ 2.0 /

l Modified theory
.

o Experiment, Mo -2.02

0 1 2 3 4
Win& aspect ratio

Fia. 5-15. Comparison of theory and experiment for triangular wing and body
combinations.

--2-
25 1.5

4.50 4.00 2.67
FiG. 5-16. Dimensions of model used in calculative example.

of the wing alone for the nonslender wing is used. (For this lift-curve
slope, either the value from the linear theory or an experimental value
will do.) The proof of the assumption lies in being able to predict
accurately the measured lift and moments of wing-body combinations by
the method. Actually, the method has been tested successfully for large

I
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numbers of wing-body combinations at subsonic and supersonic speeds.6

In Fig. 5-15 a favorable comparison is made between the predictions of
the formulas and the measured characteristics of a systematic series of
triangular wing-body combinations varying from slender to nonslender.
These data are those of Nielsen, Katzen, and Tang.8

Calculative Example:

Calculate the forces and moments of the right panel, the body in the
presence of the wing, and the complete configuration for a wing-body com-
bination with the dimensions shown in Fig. 5-16. Take a. = 0.3 radian,

= 22.5°, Mo = 2.0. This is the configuration studied by Spalir.10

As a first step, let us evaluate the quantities occurring in the formulas
as given by Eqs. (5-47), (5-50), and (5-51). From the dimensions, we
have

a 0.75
0.27_sM .75

Table 5-1 then gives

Kw = 1.23 KB = 0.39

= 648 = 0.556
\cr IV(B) B(V)

-a

m - a = 0.418 h, = 1.5868m --a

For the loading due to ap coupling, Table 5-2 gives

-a
K, =0.50 Sm -a _0.537

( ) =0.669 y,, 1.914

Since the centers of pressure are given already in distance behind the
leading edge of the wing-body juncture, let the pitching-moment reference
axis be located there. Let the reference length be the wing-body junc-
ture chord, and take the.reference area as the wing-alone area.

Since there is some question about the adequacy of the slender-body
theory for (Xa)D(w) when afterbodies are present, let us determine this
factor from Fig. 5-14. The two parameters required for doing this are

2Ba _ 2(3)34(0.75) - 0.65
c, 4
Bm= 35 tan e = 3(0.5) = 0.866

The figure then gives

= 0.85
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a value considerably greater than the slender-body value of 0.556. The
final quantity required to evaluate the forces and moments is the lift-
curve slope of the wing alone. From Eq. (2-36)

(dCL\ 27r tan e
daw - E[( 1 - B2m2)

(1 - B 2m 2) = 0.5 sin- 1 0.5 = 30 °

E(30 °) = 1.4675

(dCL _ 2(0 2.14 per radian
da Jw 1.4675

Let us now evaluate the force and moment coefficients for the right wing
panel as given by Eq. (5-47).

214
(1.23) (1.2 (0.3)(0.924)

0 50 /2. 4\(0.3)2(0.924)(0.383) 0.399

2 14
(Ch)r p (1.23) 214 (0.648) (0.3) (0.924)

0.50 (1) (0.669)(0.3)2(0.924)(0.383) = -0.258

(COp -(123) "14 (1.586) (0.3)(0.924)

0.50 .1o 2 -1914 (0.3)2(0.924)(0.383) -0.160

The coefficients for any other panel can be calculated as if the right-hand
panel had been rotated by angle p into its position.

The force and moments for the body in the presence of the wing are
given by Eq. (5-50).

(CL)B(w) = 0.39(2.14)(0.3)
= 0.25

(CMXI)B(W) = -0.39(2.14)(0.85)(0.3)
= -0.212

(Cc),(W) = (C)n(w) = 0

The forces on the complete wing-body combination are given by Eq.

(5-51).

(CL)c = (CL)N + (0.39 + 1.23)(2.14)(0.3)
= (CL)N + 1.04

(Cc) = 0
(C,,)c = (Cm,)N - [0.39(0.85) + 1.23(0.648)](2.14)(0.3) (C,)N - 0.725
(CI)O = 0

- , --- - - - - - - - - - .... 2---- 2... -, - - . . . . .. . -- 2 -. .. .. ...- _ ,_ .
.

:L T . ::. . ... .
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5-8. Simplified Vortex Model of Wing-Body Combination

A simplified vortex model df a wing-body combination is useful for
many purposes, and such a model is illustrated by Fig. 5-17. Consider
the circulation distribution across the wing panels shown in the figure.
The actual shape of the distribution is given by the integrand of the
integral in Eq. (5-15). If r0 is the circulation at the wing-body juncture,

,4 I 4

B I I I f

I I

B B

ro

r 0 o

Section AA Section BB
Fwo. 5-17. Simplified vortex model of slender wing-body combination.

then
S [03.1y' - a')(.3.2 - y2)] i5-4
= y(s.1 - a')

The trailing vorticity is proportional to the slope of the circulation dis-
t tribution curve and is distributed conitinuously across the wing span,

being concentrated toward the wing tips. According to the discussion of
l See. 6-2, the trailing vorticity soon rollsup into a concentrated vortex
~near the center of gravity of the-vortex sheet. The center of vorticity
i for the present circulation distribution, which is nearly elliptical, lies



WING-BODY INTERFERENCE 139

very close to 7r/4 of the panel semispan from the wing-body juncture.
See Table 6-1. Assume therefore that the external wing panels are
replaced by a bound vortex in the panel plus a trailing vortex on each side
as shown in Fig. 5-17. The presence of the circular afterbody requires
an image vortex system to cancel the velocity normal to the body induced
by the external vortices. Or, from another point of view, the bound
vortex in the wing has to be terminated inside the body in some fashion.
In so far as the flow in each crossflow plane can be considered independent
of that in other crossflow planes, as in slender-body theory, we can satisfy
the -body boundary condition by the introduction of the image trailing
vortices as shown. The image vortices must be so located that

a
2

= - (5-55)
ro

It is possible to complete the vortices by extending them forward to form
horseshoe vortices as shown in the figure.

It is to be pointed out that the foregoing model is not accurate in the
immediate neighborhood of the wing because many vortex lines lie on the
wing surface. Nevertheless, the model accurately predicted the division
of lift between wing and body. Since we have replaced the wing-body
combination by a pair of horseshoe vortices, we have a uniform loading
along the part of the vortex normal to the stream, the so-called lift-
ing line. The load per unit spanwise distance of a lifting line in poVoro,
and the lift on the body is represented by the length of the line inside
the body, and similarly for the lift on the wing. Thus

L= 
2poVoIo (Yv -

= qo2ra ( - + '.) (5-56)

It will be recognized that this equation, is a special case -of Eq. (4-121).
The vortex strength is

(7r/2)aV 2(J- a/sM2 + a4/8M1)yo _r a2/y. (5-57)

The ratio of the lift on the body to that on the wing panel is

LB(w) KD
Lw(,, -K17-

= a - a2/y. (5-58)
yV - a

The values of KB/Kw obtained from the simplified model are compared
with the corresponding values from slender-body theory for several
values of the radius-semispan ratio in Table 5-3. These values are based

ZI
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on the value of (y, - a)!(s. - a) of -./4. 'It is interesting that the
approximate model predicts a division of lift between body and wing very
close to that of slender-body theory.

Behind the trailing edge, vortices roll up and follow the streamline
given implicitly by Eq. (4-88). Actually there is developed a load on the
afterbody because of the motions of the vortices. The actual load can
be calculated by Eq. (4-121). As the vorticespass along-the body in the

TABLn 5-3. VAL us Or KB/Kw

a/m0 0.2 0.4 0.6 0.8 1.0

Slender-body theory 0 0.239 0.451 0.646 0.826 1.0
Vortex model 0 0.242 0.459 0.656 0.837 1.0

downstream direction, their lateral spacing decreases. It can readily be
seen from Eq. (4-121) that the afterbody loading, is then downward,
that is, negative. The problem of afterbody loading for a symmetri-
cal vortex pair in the presence of a circular cylinder was studied by
Lagerstrom and Graham."

SYMBOLS

-a body radius
d body radius occurring with 8
A aspect ratio of wing alone
bo(z) function of x occurring in complex potential
B (M 2 - 1)
c, chord at wing-body juncture
C cross-wind force, Fig. 5-2
Cc cross-wind force coefficient, Fig. 5-2
Ch hinge-moment coefficient of wing panel, Fig. 5-2
C1  rolling-moment coefficient
dCL/da lift-curve slope per radian
CL lift coefficient, Fig. 5-2
C. pitching-moment coefficient, Fig. 5-2
Cz Z force coefficient, Fig. 5-2
E complete elliptic integral of second kind
k modulus of elliptic integral
V' complementary modulus, (I - C2)i

K complete elliptic integral of first kind
KD ratio of lift on body in presence of wing to lift of wing alone,

90
Kw ratio of lift of wing panels in presence of body to lift of wing

alone,= 0
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K, lift ratio specifying additional wing load due to sideslip at con-
stant angle of attack

refe'ence length
L lift force in plane of V0 and missile longitudinal axis
m tangent of wing semiapex angle
Mo free-stream Mach number
p local static pressure
P Qssure coefficient, (p - po)/qo
P9 additional pressure coefficient due to sideslip at constant

angle of attack
P+ pressure on impact surface (positive a)
P- pressure ori suction surface (positive a)
AP P+ - P-

qo free-stream dynamic pressure
ro radial distance to external vortex
ri radial distance to image vortex
s local semispan of right wing panel
sm maximum semispan of right wing panel
t local semispan of vertical panel
tm maximum semispan of vertical panel
u1, v, w perturbation velocity components along x, y, and z, respec-

tively, for unit Vo
U1, V,, w1 perturbation velocity component at a = = 0 for unit Vo
Ua, va, Wa perturbation velocity components due to angle of attack for

unit Vo and unit a
ug, vp, wp perturbation velocity components due to angle of sideslip

for unit Vo and unit j
Vo free-stream velocity
W complex potential at a = 0
W ' complex potential due to angle of attack
x, y, z missile axes of symmetry
x', y', z' missile axes of symmetry for angle of attack with p = 0,

Fig. 5-2
9a coordinates of center of pressure for loading due to angle of

attack
4, 9V coordinates of center of pressure of additional loading due to

sideslip at constant angle of attack
Yv lateral position of concentrated vortex
Y, Z forces along y and z axes

y +iz
a angle of attack, a, cos p
ac included angle between Vo and-missile longitudinal axis
aw wing angle of attack

angle of sideslip, a, sin

,
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ro value of r at wing-body juncture
r(y) circulation distribution
a y y2/a2

6 semiapex angle of wing alone
0 polar angle
X smn/a; also panel taper ratio
r82/a 2

Fig. 5-12
interference potential

01 potential due to thickness, a = 0
0. potential due to angle of attack

potential due to angle of sideslip
angle of bank

' 1, IP2  Eq. (5-40)

Subscripts:

B body alone
B(W) body in presence of wing panels
C complete configuration

r  missile nose or forebody
P wing panel
W wing alone formed by joining exposed wing panels together
W(B) wing panels in presence of body
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CHAPTER 6

DOWNWASH, SIDEWASH, AND THE WAKE

In this chapter we will be concerned with methods for predicting the
streamline directions behind a lifting surface, alone or in combination
with a body. This knowledge is necessary for the determination of the
aerodynamic characteristics of any aerodynamic shape, such as a -tail,
immersed in the flow. For this purpose the direction of the streamlines

z

,Trailing vortex, ar

FIG. 6-1. Wind axes and sidewash at the trailing edge of the wing.
will be specified with respect to the system of wind axes shown in Fig.
6-1. Let the components of the streamline velocity V with respect to
the missile be f, V, and rv along the positive axes of :t, g7, and 2, respectively.
Then the downwash angle e and the sidewash angle q are defined to be

e artan- - -

L - (61

ct aresshw inF

These definitions based on the local streamline velocity are to be corn- 
pared with the tangent definition of the angle of attack and the sine

1 V= arcin -

IT V
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definition of the angle of sideslip in Sec. 1-4, based on the free-stream

velocity. Thus the angles of downwash- and sidewash for the streamline
velocity have the opposite sign conventions of the angles of attack and
sideslip for V0. The term wake is used in reference to the regions of vor-
ticity or the vortex sheet associated with flow behind an aerodynamic
shape.

6-i. Vortex Model Representing Slender Wing with Trailing Edge
Normal to Flow

Consider the sidewash velocities at the trailing edge of a slender wing,
as shown -in Fig. 6-1. The t axis is aligned in the V0 direction, and the
wing as drawn shows no angle of attack because a is assumed small. Let
the potential on the bottom surface be q5+ and that on the top surface be
0- so that the positive sidewash velocities on the bottom and top are
00+/09 and O¢-/O. Consider an enlarged section of the trailing edge.
The circulation r around the contour is defined to be

r = q, ds (6-2)

where q, is the velocity component tangent to the contour, and the line
integral is taken in the counterclockwise-sense. The quantity P is then
taken as the measure of the strength of all vortex lines threading through
the contour. In evaluating the circulation, let us for the moment ignore
the presence of any shock -waves. Then we can evaluate the circulatior
around the contour as follows:

0 12 = b 2 02 =-'-
5(6-3)

3P4= -1bD& r~ = 6

Thus ar,2 4 = ( % ) (6-4)

Since 0+/109 is positive as shown, and 0o-/0a is negative, the circulation
will be positive corresponding to a couuterclockwise vortex. Let us
define the potential- difference as the positive quantity

= -(6-5)
r, 234  = d(AOrj)e

so that OP dp (6-6)

or the trailing-vortex strength per unit span is the negative slope of the
potential-difference curve. Alternatively,

sr =(6-7)

or the total- vortex -strength trailing back from the trailing edge between

any -two spanwise-points is equal to the negative of the change in potential
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difference across the trailing edge between the two points. Thus, from
a knowledge of the velocity potential at the wing trailing edge, the
strength of the vortex lines leaving the edge can be directly calculated.

From the simple preceding result the vortex model of the flow at the
wing trailing edge can be-constructed, and such a vortex model is shown
in Fig. 6-2. The potential difference at the trailing edge produces a
trailing-vortex sheet, the strength of which is dr/dy per unit span given
by Eq. (6-6). The tendency of the vortex strength per unit span to
approach infinity at the side edges of the sheet is noteworthy. The vor-
tex lines do not terminate at the wing trailing edge but can be considered

FIa. 6-2. Vortex system representing wing.

to lie in the wing surface as shown. These bound vortex lines can be
shown to lie along contours of constant potential difference. The fact
that these lines do not lie along the quarter-chord line is the only differ-
ence between the foregoing model and that of simple lifting-line theory.
Modifications of simple lifting-line theory to account in part for this differ-
ence have, of course, been made in an effort to adapt lifting-line theory to
lower aspect ratios.8, 9 The exact positions of the vortex lines on the
planform of the wing will have an influence on the downwash and side-
wash fields right behind the trailing edge, but their influence is apprecia-
ble only a short distance downstream, as will subsequently be shown.

Consider now a mathematical determination of the vortex strengths at
the trailing edge of the wing in Fig. 6-2. The complex potential for the
slender flat-plate wing on the basis of Table 2-3 is

W(a) = + i' = bo(t) - iaVo(A2 - 802)i (6-8)

in any crossflow plane with the local semispan equal to so. The potential
at -the trailing edge on the upper surface is

= bo(O) + aVo(S 2 - g2)i (6-9)

_
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and on the lower surface

= bo(0) - aVO(sm - g2)% (6-10)
so that

APt- 2oVo(. 2 _ (6-11)

The strength of the trailing-vortex sheet per unit span is

dr = - A 2Vo (6-12)

The vortex strength per unit span exhibits square-root singularities at
the side edges of the vortex sheet. Only the part of- 0 asymmetrical with
respect to 2 can contribute to the potential difference at the trailing edge:
that is, the part due to angle of attack or camber. Within the framework

Oblique shocks

Fio. 6-3. Circulation contour with trailing shock waves.

of slender-body theory the shape of the planform does not affect the
potential difference at a trailing edge normal to the stream, and therefore
has no effect on the trailing-vortex strengths. It is to be noted that the
potential difference can differ from the span loading if the square terms of
Bernoulli's equation contribute to thq span loading.

No particular attention has-been paid to the shock-wave system at the
trailing edge of the wing. Figure 6-3 illustrates the state of affairs for an
edge normal to the air stream. The contour of integration 1234 of Fig.
6-1 for evaluating the circulation is repeated. Although the contour
straddles the two plane shock waves as shown, the contributions of sides
12 and 34 to the circulation still vanish as in the original derivation.
Also, if the sides 23 and 41 are brought down between the shock waves,
the circulation will still be the same, since the velocities along 23 and 41,
being tangential to the shock fronts, will remain unaltered passing
through them.

Although the simple case of a trailing edge normal to the flow was
assumed in the derivation, this restriction can be relaxed. Consider the
trailing edge at an angle of sideslip # as in Fig. 6-4. The velocity can be
broken down into a component Vo cos j perpendicular to the trailing
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edge, which produces a potential 0, and a component V0 sin j3 parallel to
the trailing edge, which produces a potential s. It is clear that Oo will
produce a potential which has the same value at corresponding points on
the top and bottom surfaces and which therefore adds nothing to .
However, in the calculation of A01, the appropriate free-stream velocity
and angle of attack normal to the trailing edge must be used. The
sidewash velocity Vo sin P, when superimposed on the flow due to m, will
straighten out the vortex lines in the free-stream direction, as shown in
Fig. 6-4.

zVortex sheet

" o Cos 04

V sin P
FiG. 6-4. Vortex system representing slender wing with sideslip.

6-2. Rolling Up of the Vortex Sheet behind a Slender Wing

In the preceding section the circulation distribution at the trailing edge
of a wing was determined, and now we consider what happens as the
vortex sheet leaves the trailing edge and moves downstream. Two
slender-body solutions exist for the shape of the downstream sheet. The
first solution is that proposed by Jones, 4 and subsequently treated also
by Ward (Ref. 1 of Chap. 3); the second solution is that of Westwater. 2

In the Jones-Ward solution two linearized conditions are used: first, that
the velocity is tangential to the vortex sheet on both sides, and second,
that the pressure is continuous through the sheet, as calculated by the
linearized Bernoulli equation. The consequence of these two assump-
tions is that the vortex lines are straight and parallel, as in lifting-liDe
theory. If the two conditions above are not linearized, then the Jones-
Ward solution is-modified in two aspects. In the first place, the vortex
lines are no longer straight and parallel, but -a more serious difficulty
arises. The infinite velocities at the outer edges of the vortex sheets
give a finite force tending to tear the sheet apart, whereas no such force
arose with the linearized Bernoulli equation. As a consequence of this
force, the sheet, instead of tearing apart immediately, starts to roll up at
the edge. A more detailed discussion of this phenomenon is given by
Ward.5

Let us now turn to the work of Westwater. As the vortices stream
backward, they induce velocities on each other in such a manner that the

f
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center of the sheet is depressed relative to the outer edges which roll up.
If the usual assumption of slehder-body theory is made that the flow in
each crossflow plane is independent of that in others, a simple calculation
can be performed to see how the sheet rolls up. With reference to Fig.
6-5. the magnitude of the velocity induced on one vortex by another, say
the velocity induced on vortex 2 by vortex 1, is

2( (6-13)

the velocity acts normal to the radius vector joining the vortices. West-
water2 has calculated the rolling up of the vortex sheet due to an elliptical
potential difference at the wing trailing
edge. In his calculations, Westwater re- I'2
placed the continuous vortex sheet by 20
vortices- of equal strength, and computed
their mutual interactions by means of Eq. A
(6-13). Having calculated the velocities of
the vortices in a given crossflow plane, he
was able to determine their new positions in
a crossflow plane a short distance down- 2r
stream. By continuing this step-by-step Fio. 6-5. Mutual induction be-

tween pair of two-dimensional
process, he was able to calculate the rolling vortices.
up of the vortex sheet for the elliptical case.
The results of Westwater's calculations are illustrated in Fig. 6-6.

The edge of the vortex sheet starts to curl up by virtue of vortices
moving along the sheet toward the edges on each side. At the same time
the center 'of the sheet moves downward. The vortex sheet tends to roll
up into a concentrated vortexon each side, with a lateral spacing between
vortices somewhat less than the wing span. For an elliptical loading,
the vortex sheet can thus be approximately represented by a pair of con-
centrated vortices for sufficiently large distances behind the wing trailing
edge. It should be borne in mind, however, that a potential difference
at the trailing edge of other than elliptical shape can produce a different
type of vortex system. See Fig. 6-21.

It is desirable to know at what distance behind the wing trailing edge
the -vortex sheet is "essentially rolled up." Mathematically, the vortex
sheet approached.a completely rolled-up condition only in an asymptotic
sense and never achieves it. Thus, some arbitrary criterion must be
specified to indicate when the sheet can be said -to be tolled up. Kaden,l
using a particular model and a particular mathematical criterion, has

*, established the following distance for the sheet to roll up for elliptical
distributions,

A i
0.28 b (6-14)

71
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where b is the wing span and A the aspect ratio. The form of this equa-
tion can be established on the basis of similarity arguments. The
distance to roll up e, or any other significant downstream distance, is
directly proportional to some linear dimension of the wing and to the
free-stream velocity, and is inversely proportional to the magnitude of

--- Vortex lines

Trailing edge of wing

\ \ \ \\ . \\ '

,\\ \ ,, ,
• \ \ \ \ \ \ x

,, \" '

y

FIG. 6-6. Shape of vortex sheet associated with elliptical potential di,.tribution accord-
ing to Westwater.

the velocities induced by the vortex system.

b c y0  (6-15)

Vi

The induced velocities vary directly as the vortex strength and inversely
as the vortex span b.

e bbV (6-16)
r

Thie vortex strength is related to the lift by

L = poVorb. (6-17)

Thus bp Vo b' poVo 2Sw (6-18)
b L Sir L

Since b, is a constant fraction of-b for a given shape of potential difference
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curve, we can write
b CL (6-19)

where k depends on the shape of the curve. According to Spreiter and
Sacks,6 the distance e given by Kaden's formula seems to be low.

For purposes of computing the downwash and sidewash velocities
behind a lifting configuration, it is sometimes not critical or even impor-
tant whether the vortex sheet is flat or rolled up, as we will see in the next

4 -\ -

rre

Fia. 6-7. Horseshoe vortex representing elliptical potential distribution.

chapter. Under such circumstances a precise knowledge of how far
behind the trailing edge the vortex sheet is rolled up is not required.

From a qualitative picture of the vortex wake -behind the wing, let us
proceed to the calculation of the strength and lateral position of the
rolled-up vortex- pair associated with an elliptical potential-difference
distribution. Consider first the strength of the vortices ro. With
reference to Fig. 6-7, the potential difference at the trailing edge is

(AO)j. = 2aVo(s.4 -' 2)! (6-20)

Since the spanwise rate of change of bound vortex strength is the same as
the rate for (AO)h, the total strength of all trailing vortices across the
semispan is equal to (AO)j, at the root chord. Thus

r0 = (A at = 0 (6-21)
Po = 2aVos,
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It is also possible to relate r 0 to the span-load distribution in those
cases where the span loading and potential-difference distributions are
similar. A suffwient condition for this to be true is that the pressure
coefficient be given by

p+=-2€+ p =-2 -
Vo Vo (6-22)

The loading is

p+ - p- = AP = (6-23)
Vo

and the span loading at any spanwise distance is

(cc,) = AP d - (A4),e (6-24)
file 10

where c is the local chord and c, the section lift coefficient. From Eqs.
(6-21) and (6-24) the desired relationship is obtained.

r o = -V0 (CCO 0.o (6-25)

Let us now turn our attention to the lateral positions of the vortices.
To this end we use the Kutta-Joukowski law. For a horseshoe vortex
of strength r the lift associated with the vortex is poVoPr per unit span
of the bound portion. This lift for one horseshoe vortex is

Li = 2p0VoFgj (6-26)

For a colledtion of n horseshoe vortices that represent a trailing-vortex
sheet the total lift is % constant. The sum of ri,- over all the vortices
must be a constant independent of distance behind the trailing edge.

n

. j@ = constant (6-27)

It is thus clear-that the "lateral center of gravity" of the vortex sheet on
each side of the streamwise axis does not change because of the rolling
up of the sheet, nor does it depend on how many vortices the sheet forms.
For our model of one vortex for each half of the sheet, we obtain the lateral
center of-gravity of the fully rolled-up vortex.

n!

= P0  (6-28)

Since the strength of the trailing vortices is d'/dg per unit span, we get,I
I!
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with the aid of Eq. (6-12), letting n-- 00,

To Jo (8.-V2)1 (6-29)
2 c V o s , , r s , . 7 r ( -0or = = 4m (6-30)

With the vortex strength and position determined by Eqs. (6-21) and
(6-30), we can calculate the angle at which the vortices move downward
because of their mutual induction. The downward velocity on the
center line due to one vortex is ro/2 g, , so that the angle 5 (Fig. 6-7) is

1"o 8o:77 4(6-31)

6-3. Calculation of Induced Velocities of Trailing-vortex System

From the trailing-vortex system the induced velocities in crossflow
planes behind the wing can be calculated by several methods, including

r- -r

P

X Y
CP./p (PIZ) _

qp
FiG. 6-8. Vortex line segment of Biot-Savart law.

those of two-dimensional incompressible vortices and supersonic horse-
shoe vortices. It is of interest to compare these two methods. The
induced velocities due to two-dimensional incompressible vortices,
which we will generally use, are given by the Biot-Savart law. With
reference to Fig. 6-8, the induced velocity qp at point P due to a vortex
line of finite length is

q - (cos -Y1 + cos Y) (6-32)

4Ir
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For an infinite line vortex, the induced velocity patterns are similar in all
crossfiow planes and may be calculated by

r
qP - (6-33)

The downwash -av and the sidewash 0 are easily obtained by resolving
the velocity qP perpendicular to

(-r) the radius vector r into components
F/21r downward and to the right. Thus

zr

0)2 + (_, 2 2 (6-34)
P Z

2irr r
- r( , - z)

2,x2 + (, Z) )2J

The contours of constant downwash
- lo and sidewash for an incompressibleS -- infinite line vortex are shown in

1 Fig. 6-9. The use of the infinite
line vortex for calculating the in-

r duced velocity field in the crossflow
planes is compatible with the use of
slender-body theory.

If the vortex system representing
-1; the flow behind the trailing edge is

:. known to the accuracy of linear
--2 EItheory, then the supersonic horseshoe-2 -1 0 1 2 vortex of linear theory can be used

.7 to calculate the induced velocityFIG. 6-9. Contours of constant down- field. Let us now turn to this sub-wash and sidewash associated with ject. For a horseshoe vortex theinfinite line vortex in streamwise
direction. downwash at a point depends on

the region of influence in which itlies.12 With reference to Fig. 6-10, in the Mach forecone from point A,an observer sees the bound vortex as if it were of infinite aspect or two-
dimensional. The downwash in the region occupied by A accordingly iszero, as in two-dimensional supersonic flow. Point B sees one trailing
vortex and has downwash

=DB . - g )[f 2 - B2(g - s,)2 _ 2B2,2]
2r[(s. - g)2 + 2](t2 - 2 B2 2)[t2 - 8 2(7 8,)2 B B2i2]J (6-35)
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2 For a point such as C which sees both trailing vortices, the downwash is

-rx(s, - 9)[2 - 8)' - 2B 2 21
2?r.rC -B22)[.3,- )2 + 22][.PC _- B2 (9 - 8,,)2 - T

rn(s, + g)[2 - B2(g + s,)2 - 2B2,1

24-T B2 2)[(S, + g)2 + 2][t - B2 (aj + Q~2 B2 2~ (6-36)

For large values of x we obtain

-r(s,- ) )(6-37)
7)2 + ,2] 27[(s. + g) 2 + ]3

This crossflow plane at infinity, the so-called Trefftz plane, has a down-
stream pattern identical with that given by Eq. (6-34) for vortices located

/ \ // \/ \

/ *B 'k

/ / \
/ /

/ / C.O\

/ / \

tJ
- - .(
A-A-

/ / N

I I\\
1 I\\

1 C - I I
\II 3;

S\\/ /

S\/ /

FIG. 6-10. Regions of influence of supersonic horseshoe vortex.

at, = ± s,, = 0. Thus, at distances far downstream, the supersonichorseshoe vortex gives a downwash field identical with that obtained

from two-dimensional incompressible vortices.
The foregoing behavior suggests that, at some definite distance behind

the trailing edge, the downwash, as calculated by supersonic horseshoe
vortices and by the incompressible two-dimensional vortices, should
be practically identical. Figure 6-11 compares the downwash on
the 2 axis behind a lifting line on the basis of the two methods of
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calculation just described. At a distance X/Bs, of about 2.5 behind the
bound vortex (lifting line) the difference between the downwash cal-

culated by the two methods is about 8 per cent. Let us interpret this

distance in terms of chord lengths behind the trailing edge for a rectangu-
lar wing with the lifting line located at the midchord. For an effective

aspect ratio BA of 2, this downstream distance for /Bs. of 2.5 would be

about two chord lengths, and, for an effective aspect ratio of unity, the

distance would be about three-fourths of a chord length. It is clear that,
for low effective aspect ratios that characterize slender configurations, the

Slender-body theory\
0.8 o1.0

Supersonic horseshoe
(_ _)) 0.6 " IS

r/ r o 0 .4 - /"

0.2 -

0 1 2 3 4

Fxo. 6-11. Comparison ofdownwash calculated by supersonic horseshoe-vortex theory
and slender-body theory.

difference between downwash calculated by the two methods is small for
reasonably large distances behind the wing trailing edge.

6-4. Vortex Model of Planar Wing and Body Combination

The same principles used to construct a vortex model of the flow behind
a wing alone can be extended to wing-body combinations. The only
additional ingredient is the set of image vortices occasioned by the pres-
ence of the body. Let us first construct the trailing-vortex system associ-
ated with the wing panels. For this purpose let us use Eq. (5-3), and
consider the wing panel for which a = j. For the potential at the panel
trailing edge, we obtain

O(B)= Vo bo(a)+adlOgf1-a So+ o +g]
dfSo, \ /J

(6-38)

The plus sign refers to the upper surface, and the minus sign to the lower.

-I
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The potential difference at the panel trailing edge is thus

0A) - - 0+ = 2cev0 Y)']'/-
2aVo[(sm

2g 2 - a4)(s2 -Vg[)](e (6-39)

SmY

The trailing vortices are of strength dr/dg per unit span as given by Eq.
(6-6) dr d(AO)j+ (6-40)

Several points of interest arise in connection with the distribution of the

potential difference across the wing
panel. The distribution is given by 1.0

,r _A@ o__

-[(8m21g2 -
4 (S 2 

- f2)] i (601 1 - -__

i Sm - a2)(6-41)

The distribution depends only on the e 0.4

radius-semispan ratio a/sm, and the
fraction exposed semispan ..2

I(9 - a)/(s., - a)
0 0.2 0.4 0.6 0.8 1.0

It is in fact insensitive to a/sm, as y-a
shown by Fig. 6-12. For a/sm of Sm-a

zero, the distribution is precisely FG. 6-12. Potential-difference distri-

efor the wing-alone bution at trailing edge of wing in com-
elliptical as fcase, bination with body according to slender-
Eq. (6-11). For a/s approaching body theory.
unity, the wing panel is effectively
mounted on a vertical reflection plane, so that in this limit the distribution
is again elliptical. The assumption of an elliptical distribution for all
values of a/sm is a good approximation. The shape of the distribution
is tabulated as a function of a/sm in- Table 6-1.

An additional- point of interest is that on the basis of sender-body

theory the potential difference at the panel trailing edge is independent
of the rate of body expansion. This result -is a consequence of the fact
that the potential due to the body expansion is symmetrical above and
below the horizontal plane of symmetry, and thus can add nothing to
the potential difference at the trailing edge. The span-load distribution
at the -wing trailing edge is- known -to be-affected by the rate of body
expansion. In this instance, therefore, the potential difference and the
span loading at the panel trailing edge are different.

Having now established the strength- of the trailing-vortex sheet
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TABLE 6-1. NONDIMBNSIONAL CIRCuLArioN DiSTRIBUTION OF WING PAN,, IP/r0

-a a/s

on - a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.980 0.969 0.9066 0.966 0.968 0.970 0.972 0.974 0.976 0.978 0.980
0.4 0.917 0.897 0.887 0.884 0.886 0.889 0.894 0.900 0.906 0.911 0.917
0.5 0.866 0.843 0.832 0.827 0.828 0.832 0.837 0.844 0.851 0.859 0.866
0.6 0.800 0.776 0.762 0.757 0.756 0.760 0.766 0.773 0.782 0.791 0.800
0.7 0.714 0.690 0.676 0.669 0.668 0.671 0.677 0.685 0.694 0.704 0.714
0.8 0.600 0.578 0.565 0.558 0.556 0.558 0.563 0.571 0.580 0.589 0.600
0.85 0.527 0.507 C.494 0.488 0.486 0.488 0.492 0.499 0.507 0.517 0.527
0.90 0.436 0.419 0.408 0.402 0.400 0.402 0.406 0.411 0.419 0.427 0.436
0.92 0.392 0.376 0.366 6.361 0.359 0.360 0.364 0.369 0.376 0.384 0.392
0.94 0.341 0.328 0.319 0.314 0.312 0.313 0.316 0.321 0.327 0.334 0.341
0.96 0.280 0.269 0.261 0.257 0.256 0.257 0.259 0.263 0.268 0.274 0.280
0.98 0.199 0.191 0.186 0.182 0.182 0.182 0.184 0.187 0.190 0.194 0.199
0.99 0.141 0.135 0.131 0.129 0.1-29 0.129 0.130 0.132 0.135 0.138- 0.141
1.00 0 0 0 0 0 0 0 0 0 0 0

&-a 0.785 0.769 0.760 0.757 0.757 0.759 0.763 0.768 0.774 0..780 0.785
8

m-a

directly behind the panel trailing edge, we are ready to consider the effect
of the body. The vortices due to the body cannot form in the same
manner as those due to the-wing because of the absence of a well-defined
trailing edge. The body imposes the condition that crossfiow have zero
velocity normal to the body. This condition can be satisfied by intro-
ducing an image vortex inside the body -for each external vortex. The
image vortex is placed on the radius vector to the external vortex a dis-
tance a2/r from the -axis. It has the opposite sense of rotation of the
external vortex. Let us now prove that the velocity indaiced normal to
the body by the combined actions of the external and image vortices is
zero.

The velocities induced at any point on the circle by the external and
image vortices as-shown in Fig. 6-13 are

r r
V 1 =-W- V2 -(3-2I2X 27rX 2  (6-42)

The outward velocity normal -to the body is

-s-cos o (6-43)

The geometric -relationships of the figure based- on the similarity of tri-

4t

i

--------------------------------------- !--.-
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angles OIP and BOP include

X, ro CosO 01 X--=- r0 e~s0 -- (6-44)

X2 a COS 02 'X2
It is thus clear that

v" = 0 (6-45)

The application of the boundary condition in this fashion is consistent
with the slender-body assumption of the independence of the flow in
the various crossflow planes. Near the wing trailing edge the assumption
is only approximate, as discussed in Sec. 6-3.

~r

Fio. 6-13. External vortex with internal image vortex.

So far we have established the distribution of the strengths of the panel
trailing-vortex sheet and of the image sheet. Let us replace the continu-
ous sheet by a finite number of trailing vortices, starting with the panel
sheet. We have at our disposal the number, strength, and spacing of the
vortices. The latter two quantities are not independent, but must be
chosen so that, for the panel, the sum of the strengths of the vortices
equals the circulation at the wing-body juncture,

1i r0 (6-46)

where n is the number of external vortices per wing panel. Another
condition is that the lateral "center of gravity" of the panel vortex sheet
must be constant, as discussed in connection with Eq. (6-27). For a
panel mounted on a body, the lift of the panel is povoro per unit of exposed
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semispan. Since the system of a finite set of vortices must represent the
same panel lift as the continuous distribution, we have the lateral center-
of-gravity condition

riT(gi - a) 0 ~ ( a) dr

area under panel circulation curve (6-47)
n

or = - = constant (6-48)

The manner in which the two conditions Eqs. (6-46) and (6-47) can be
satisfied for the case of n = 2 is illustrated in Fig. 6-14. The first condi-
tion is obviously satisfied by the construction. The second condition is

r

B EF

A 4

r. r7 ;r6 r. r4 r W2 r

A 1 A 2  A 3 -A 4

FIG. 6-14 Vortex model utilizing two external vortices per panel.

satisfied by making the crosshatched areas equal as shown. Then the
areas BODE and BFGA will add up to the area under the circulation
curve for the panel. This fitting can be done graphically, or the spacings
can be calculated analytically if the theoretical shape of the circulation
curve is known. Having established J?, r 2 , 1,, and 92, we can readily
supply the remaining vortex strengths and positions. In fact, the
strengths are

ra=-r. r4 = -r, r= r, re=r 2
r7=-r 2  r.= -r 1  (6-49)

The positions are given for the more general case where the vortices-may
not lie initially on the horizontal plane of symmetry, as for a high wing

i
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condition or a banked condition. If the coordinates of the vortices 1
and 2 are given by 91, 1, and i2, 2 2, then the positions of the other vortices
are

g- a2 91 -_ a 2
2 I

912 + 22 Z391 2 + 2

a2 Y2_____ a 2 22a22 + 22 2 Z4 = (6-50)#4 2 _ 22 Y22 +. Z22

95 = -g4 .g6 = -3 g7 = -92 98 = -g1

26 = 4 26=2 7 = 2  23=2

For Fig. 6-14 we have 2 = 22 = 0. Having thus constructed a system
of vortices to represent the wing-body combination, we can now calculate
the downstream paths of the vortices.

Before a calculation of the downstream paths, it is necessary to set up a
system of downstream wind and body axes. Let the origin of the wind

FIo. 6-15. Wind and body axes.

axes and the body axes coincide at the trailing-edge station of the wing,
as shown in Fig. 6-15. Let t, g, and 2 be wind axes and x', y', and z' be
body axes. Then, for reasonably small values of a, we have

'= #(6-51)

Z' 2 + at5
To trace the paths of the vortices downstream, we must calculate

the downwash and sidewash velocities induced on each vortex by the
other external and image vortices, as well as the velocities induced by
the body crossflow. For the body crossflow the downwash and sidewash
angles at any point p, 2 are

Vo = - aa2 (92 + Z2)2(

The downwash angle -f¢j(,/Vo induced on vortex j by i and the cor- ,
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responding sidewash angle are, from Eq. (6-34),

Wj(j) i 9j - 9
Vo 27rVo (gj - V)2 + (2 - ) (6-53)

vj() _ Ij 2j - 2
Vo 2irVo (gi - g)2 + (2j - 2)2

The total downwash and sidewash angles of vortex j are then

4n

- =- +- --
V0  VTo V0i-i

4n (6-54)

0. = =v--7
V0  V~ V0

i-i

The summation is over the 4n vortices forming the external and image

systems of each wing panel with the exception of the vortex in question,
vortex j.

From Eq. (6-54) the velocity at any vortex location in any crossflow
plane can be determined. Starting with the vortex strengths and posi-
tions at the wing trailing edge, we can calculate the initial angles of down-
wash and sidewash for each of the n external vortices of one wing panel.
The changes in lateral and vertical positions AP and A2 of these vortices
in a short downstream distance Ah are

= - e(A ) (6-55)

for each of the n external vortices corresponding to one wing panel. The
new positions of the image vortices are calculated with the help of Eq.
(6-50). The process is again repeated for the new crossflow plane a
distance M, downstream, and the path of the vortex thus constructed
in a step-by-step fashion.

Illustrative Example

As an example to fix some of the foregoing ideas, let us calculate the
strengths and positions of the vortices representing the configuration of
Fig. 6-16, and then make the initial calculation of the directions of the
downstream vortex path.

The following data are given:

A = a=0.6  M 0 =2
sm

a=0.1radian n= 1 a= 1

________
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The body radius is taken as unity so that the other dimensions can be
considered as multiples of the body radius. We consider the simplest
case of one vortex per wing panel.

A. Initial vortex strengths and positions by slender-body theory (from
Eqs. (6-39) and (6-46)]:

Po a(, 2 - a2)
27rVoa rs,a

r o  (3m (1.667 - 0.600)a
2rVoa a Sm 7 7

1.067a
ir

r, ro 1.067a-
27rVoa 27rVoa r

2 = -r 1  r3 = 1  r4 =-r 1

Since we have only one vortex per wing panel, it must lie at the lateral
center of gravity of the vortex sheet P,,. Since the circulation distribu-
tion is nearly elliptical, this lateral distance is about at ir/ 4 or 0.785 of the

1.667 1.000 . . .

r ------ 30

FiG. 6-16. Configuration of example calculation.

exposed semispan. The precise value from Table 6-1 is 0.763, but let us
use the more approximate value.

yS-~ m --a

4
= = 1.000 + 0.785(0.667) = 1.525

- a2  1
2 = =- Y - = 0.656

y' 1.525
93 = -2 P4=-1

B. Initial dotmwash and sidewash angles: The downwash and sidewash
angles of vortex 1 are given by Eq. (6-54). At the trailing edge of the
wing panel, we have

1 =zl' =0 22 =z 2' =0;
23a=z3'= 0 24=Z4'=0



164 MISSILE AERODYNAMICS

Thus for vortex 1

-12(.5251 .- 02) 1.067 __1

= (1.5252-_t 02)2 L " - 1.525 - 0.656
1 +1' ]

- 1.525 - (-0.656) 1.525 - (-1.52 5)]
= -0.430 + 0.347 = -0.083 radian = -4.80
rl 0

The initial downwash angle of the vortex is negative, indicating that
it is inclined above the free-stleam direction. This is a result of the
relatively large body, the upwash of which more than offsets '"c down-
wash induced by the other vortices. The initial side:-ash Is --Oro since
the vortices all lie on a horizontal line. To continue the process, we
determine the new values of 91 and 21 a short distance downs'aeam by Eq.
(6-55) for an arbitrarily chosen increment A. We relocate the image
vortex, and repeat the calculation. The second step will give a nonzero
sidewash angle. Whether the size of the chosen downstream increment
U is sufficiently small can be determined by inspecting the calculated
path.

C. .,alculation of initial vortex strength by method of Sec. 5-8: According
to Eq. (6-25) the circulation at the root chord of the triangular wing
formed by joining the exposed wing pan lg together is

( ro N (ccJ)V.o

2,rV a,, 4-ira
here from Eq. (2-39),

16(tan co)sal A
E(1 - B2 tan' w)

and where o = semiapex angle
B 2 = M 02 - 1

s = wing semispan
E = complete elliptic integral of the second kind
A = wing aspect ratio

and (Cet)go _16(6) (0.667) (2)a
n ((1 - 6)T

2.667a
- 193=2.44a1.093

( 2.44a 0.61a

22rToa~w 4(1)~r ir

In S. ,c. 5-3 it was shown that the lift on the wing panels is greater by a
multiplicative factor Kw than the lift on the wing alone. If we neglect

4
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the small difference in the shape of the panel potential distribution and
the elliptical -distribution of the wing alone, then we can multiply the
circulation of the wing alone by Kw to obtain that for the panels of the
wing-body combination

(27rVroa)W(B) =~ (TirVoa)W
K , = 1.555 (Table 5-1)

(r ) 1.555(0.61)a 0.95a
TroaW(B) i" 7r

It is to be noted that this value of 0.95a/ir is slightly lower than the
value of 1.067a/7r calculated by slender-body theory. This result might
be expected since slender-body thcory is known to overpredict the lift
of wings alone. See Fig. 5-15. This latter procedure of determining
vortex strength is definitely to be preferred to the slender-body method
for large aspect ratios. In fact, if a more accurate determination of the
potential difference at the panel trailing edge is known than that based
on slender-body theory, it sh6uld be used in determining the initial vortex
strengths.

Slender-body theory, or any linear potential theory for that matter,
yields a simple result for the effects of roll ang;le on the vorticity distribu-
tion along the panel trailing edge. Under the combined effects of pitch
and roll, the crossflow velocity can be
resolved into components Voao cos p,
normal to the plane of the wing and
Voa, sin -p parallel to it, as in Fig. 6-17.
The-velocity component parallel to the
plane of the wing produces no potential
difference across the wing. Only the
normal velocity component produces a Y
potential difference- at the panel trail-
ing edge, a difference which is the
same at corresponding points on each p
panel. The vortex pattern is thus Voa ,
s'ymmetrical since the potentials due VOa
to the normal and parallel velocity
components are additive. This is not
to say that the load on each panel is
the same; in fact, the downgoing panel Fia. 6-17. Angle of attack and anglecarries more load than the upgoing of sideslip components of crossflow

velocity.
panel. The example is another one
where the span loading and potential distributions are not similar,
because the loading includes a coupling effect between the two poten-
tials caused by the squared terms of Bernoulli's equation.

~I

- ......... .----- -- f
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6-5. Factors Influencing Vortex Paths and Wake Shape behind Panels
of Planar Wing and Body Combinations

From the calculation procedure of the preceding section, a number of
interesting results have been obtained concerning the characteristics of
the vortex paths and wake shape behind the panels of a wing-body

1y

----- ----------

FIG. 6-18. Paths of vortices behind panel of wing-body combination; a/s,= 0.6.

combination. Let us first consider the paths of the vortices used in the
preceding example. The actual paths as computed in accordance with
the sample calculation are shown in Fig. 6-18. The vortex lines leaving

Z' the trailing edge have an upwash com-
ponent. The associated upward mo-

-o tion carries it out 6f the -high upwash
j- field close to the body to a lower upwash

field above. As a consequence the\ Step-by-step
calculation vortex path acquires a component of

.- - downwash velocity-but always lies
above the extended chord plane. The
vortex moves continuously inward to-
ward an asymptotic spacing given by

Y Eq. (4-89). Let us observe the vortex
paths in the crossflow plane. It is
possible to calculate these paths from

FG. 6-19. Streamline and vortex Eq. (4-88). It is of interest to note
path for crossflow past a circular that the pathsin the crossfow plane do
cylinder. ,.

not depend on angle of attack. The
slope of the paths in the crossflow plane is e/u, which by Eqs. (6-52)
to (6-54) is independent of a since r increases-linearly with a. Thus a
calculation for a specific angle of attack can be utilized for all angles of
attack and needs to be done only once. A vortex path calculated by the

~I
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step-by-step method is compared in Fig. 6-19 with the crossflow stream-
line for flow past a cylinder.

The factors determining the vortex paths in the crossflow plane are the
parameters r/2rVna and yl/a, where V. is the crossflow velocity, and
yi is the vortex spanwise location on the horizontal plane of symmetry.
The paths for various values of r/2rVa are shown in Fig. 6-20. For a

" ~r "0

4rVa

0 F6ppI point

Fio. 6-20. Vortex paths in crossflow past a circular cylinder.

value of the vortex parameter of zero, the paths are simply the stream-
lines for potential flow past a circular cylinder. The paths for a vortex
parameter of infinity correspond to the motion of a pair of vortices in the
presence of a cylinder in still air. They move downward in two straight
parallel paths with no body present, but their paths are bulged out by
the presence of the- cylinder."- For finite nonzero values of the vortex
parameter there are stationary points on each side of the cylinder. The
stationary points not on the axis correspond to "F6ppl points" as given
by Eqs. (4-82) and (4-83). The stationary points on the axis mark the
lateral boundaries, outside of which- the vortices move upward as for -the

--
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zero case, and inside of which the vortices move downward as for the
infinite case. Other parameters which can have an effect on the type of
vortex motion behind the panels of a wing-body combination include the
number of vortices into which the vortex sheet rolls up, the cross-sec-
tional shape of the body, and variations of vortex strength with axial
position.

Turning now to the vortex shape, we pass from a model of one vortex
per panel to one of many vortices per panel. A step-by-step calculation

made with about 10 vortices per panel
r will give a good idea of the manner in

which the wake rolls -up. Such calcula-
tions have been performed by Rogers,'
where the wake shape behind a wing-
body combination of

A= Y3 and a/s,=0.2

Elliptical is compared with the wake shape calcu-
lated by Westwater for an elliptical dis-

r tribution of potential difference at the
trailing edge. The wake shapes are very
much alike in the two cases. The cri-
teri.ia for the rate of rolling up of- the
vortex sheet behind wings given by Eq.
(6-14) can be applied with the same de-
gree of accuracy to the wake behind the

Triangular.. y panels of wing-body combinations, pro-
vided the parameter a/sm is not too large.

& It should be borne in mind, however,
r that the shpe-of the circulation distri-

bution is important in determining wake
shape. The manner in which the shape
of the curve affects the shape of the vor-
tex wake is shown qualitatively by Fig.
6-21. The elliptical circulation distribu-

3 tion rolls up into a single vortex in the
well-known manner. A triangular dis-

Fxo. 6-21. Effect oc circulation tribution must roll up in the same man-
distribution on wake shape. ner at both ends, and will eventually

form two vortices rotating in the same
direction. A distribution for which the circulation is a maximum
somewhere on the span will probably form two vortices of unequal
strength, rotating in opposite directions. The shape -of the circulation
distribution thus has an effect on the number of vortices into which the
wake rolls up,, and their direction of rotation.
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6-6. Factors Influencing Downwash Field behind Panels of PlanarWing
and Body Combinations

One purpose of determining the vortex paths and- wake shapes behind
wing panels is to obtain the downwash and sidewash fields. Consider
the downwash distribution across the span of a hypothetical tail surface
located on the horizontal plane of symmetry a distance of 10 body radii
behind the panel trailing edge. One question of interest is how important
the contributions of the body crossflow, the external vortices, and the
image vortices are to the downwash at the tail surface. In this connec-
tion let us evaluate the contribution of these items to the downwash-for
the following example.

Illustrative Example

A = 0.6  a=50
Sm

For this case the step-by-step calculation gives the vortex strengths
and positions:

r 0.95a
27rVoa 2 = -r, r3 = , r4=

= 1.39 2, = 0.044 Zj' = 0.919

g2 - = 0.501 z2' = 2 0

9 1 2 + Z1' 2  91 2 + Z1, 2

98 = -. 501 z3' = 0.330

P4 = -1.39 Z4' = 0.92

The- downwash will be calculated at the point =2, z'= 0. The
downwash at this point calculated from Eq. (6-54) is, for the various
-components:

Body crossflow:
-12 22 - 02 1

(\)=/ 1 (22 02)2

Vortex 1:
= 095 1.392 - 2.000

, , " =0.95 = 0.152
\a ir[(1.392 - 2.000)2 + (0.919)21

Vortex 2:
0.500 - 2.000

-0.95 = 0.192
\!)2 7r[(0.500 - 2.000)2 + (0.330)2

Vortex 8:

0 95 -0.500 - 2.0007r[(-0.500 - 2.000)2 + (0.330)2] 0
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Vortex 4:

-0.95. V -.- 1.392 - 2.0000.95_ 2.000)2 + (0.919)2] 0.083

The downwash due to the external vortices is

eo -- + a = -0.35'

The downwash- due to the image vortices is

= 0.370a a

The downwash distributions across the-horizontal plane of symmetry
are shown in Fig. 6-22. The contributions of -the external and image

-5

\Bodycrossflow

I

0 Wing vortices

1 Image vortices

0 1 2 3 4 5- 6

Flo. 6-22. Components of downwash on horizontal-plane of symmetry 10 radii behind
wing panel; A , Mo =-2, a/s, = 0.6.

vortices in this case are -largely -comPrnsating, and the -total downwash
field is dominated -by the body upwash. This result is typical of com-
binations with large ratios of body radius to combination semispan, since
the body is then important in €omparison to the -panels. Figure 6-23 is
presented for the same conditions as Fig. 6-22, except that a/s is 0.2

i ~i. ..



DOWNWASH, SIDEWASH, AND THE WAKE 171

rather than 0.6. It is clear that here the wing vortices dominate the
downwash- field as might be expected.

One question that arises is: How accurate is the downwash field nalcu-

lated by a model based on one vortex-per wing panel, in comparison with

one based on many vortices per panel? The answer to this question
depends-on-several factors, one of which is the use to which the downwash-
is to be put. If it is to be used to calculate the-gross tail load, then its
average-effect on the -tail is important, and the precise shape of the-down-
wash variation across the tail-is of secondary -concern. Here one vortex
will usually give sufficiently precise answers in many practical cases.

-6 (

Bd crossf low

-

0 Image vortices 1

I Wing vortices

6
0 2 3 4 5 5

FIG. 6-23. Components of downwash on horizontal plane of symmetry 10 radii behind
wing panel; A = ?, M0 = 2, a/sm = 0.2.

Also, if the vortex- sheet is- essentially rolled up into -one vortex-as for
an elliptical circulation -distribution-then a model using-one vortex per
wingpanel is a good one, being in good accord with the -physical facts.
On the other hand, if the sheet -rolls up into two vortices-as for a tri-
angular distribution-then a model using two vortices per wing panel
would give -agood representation. In cases where the precise- distribu-
tion of downwash across the-tail panel is important, a-scheme using many
vortices per panel- will be-required.

6-7. Cruciform Arrangements

In this section we will discuss the application- of the step-by-step -pro-

cedure to the calculation of vortex paths behind cruciform configurations
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and in-addition will present an analytical solution for a vortex system
representing a cruciform wing arrangement. The section discusses wake
shapes and "leapfrogging."

The step-by-step calculative process presented in connection with
planar wing-body combinations can be readily adapted to cruciform
arrangements, provided the initial vortex positions and strengths are
specified. The procedure is adaptable to any bank angle, ratio of vertical
to horizontal spans, ratio of body radius to configuration semispan,
numbers and positions of vortices, subject only to the usual conditions- on
the sum of the vortex strengths and lateral center of gravity. To- calcu-
late the vortex strengths and positions, consider the model shown in Fig.

i g Z

FIG. 6-24. Vortex model of cruciform wing-body arrangement.

6-24. It should be noted that y'- and z' are the body axes for zero roll
angle. The crossfiow velocity is-broken into a component Voa normal to
the "horizontal" panels and a component lV0i normal to-the "vertical"
panels. The potential produced by T 0a will be different on the upper
and--lower sides of the horizontal surfaces, and will thus cause a potential
difference between them. The potential produced by Vof3, on thc

"other hand, is the same on the upper and lower sides of the horizontal
panels. Since the -potentials due to -Voa and- V0/3 ares-additive in linear
potential theory, it is clear -that only the velocity component Yoa pro-
duces potential difference across the horizontal panels, while V43 pro-
duces potentialdifference across the vertical panels. In the computation
of the potential difference across the wing panels, the horizontal and
vertical panels -can thus be treated as planar configurations acting at

their owu angles of attack. The circulation ,distributions of Table 6-1

r2 +1

c C.

J i -
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are directly applic-,ble to cruciform arrangements. If we desire to use a
model based on a single vortex per wing panel, then the- ortex strengths
can be calculated from Eq. (6-39).

8 
2  2

P1 =-2 = 2Voac cos (P9 m

3 = -- =2Vo sin-o tm2 - a2  (6-56)
t,.

The lateral- positions at the trailing edge given with reference to the y',z'
coordinate -system (Fig. 6-24) are

Y1' = -Y2 a = +[a+Y -a(s- a)]cos

=sm, - a (6-57)
Y31' -Y4 -a -a) sin o

The parameters -involving y,. can be obtained from Table 6-1. With the
initial Vortex strengths and positions now determined for a model of one
vortex per panel, we can carry -out the step-by-step calculation. This

3 2'

Fio. 6-25. Initial vortex positions for cruciform wing; p = 450 .

model is sufficiently accurate for most downwash and sidewash determi-
nations. For p -= 450 and panels of equal span, the vortex strengths will
all be the same.

An analytical- solution due to Spreiter and Sacks6 is known for the
vortex paths for four equal vortices associated with an equal-span cruci-
form wing arrangement -for a roll angle of 45', as illustrated- in Fig. 6-25.
The conditions for this case-are

a =0 sM ==450 y=r
Sm 4
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If the lateral position of vortex 1 at the trailing edge is denoted by yo',
then

Yo "- - )(6-58)

Let the parameter yr', specifying the lateral position of vortex 1 at any
downstream position, be given- by

sin 2  = 1 - 3 (,- 1)2 (6-59)

where T = r/ 2 corresponds to the trailing edge, and greater values of r
correspond to positions behind the trailing edge. The downstream dis-
-tance d-corresponding to the lateral position yl' is
d 3
do 7 1.0834 + 1 WE( , ) - 4F( , T)

sin r cos (6-60)
(1 - Y sin2 r)J -

where F and E are incomplete elliptic integrals of 'the first and second
kinds, and CL' is the Z' force coefficient based on the area of one set of
wing panels, the force being in the combined plane x'z'. The correspond-
ing vertical position of vortex 1 is

enl's- +V 2 d C1,1
Y = 3 [1.4675 - E(, r)+ sin (cos + 3) (6-61)

-- 2(1 - Y4sin 2 r)i 7 ryo' A

The lateral position of vortex 2 is given by the condition that the lateral
center of gravity of vortices 1 and 2 remain unchanged.

Y2 = 2 yo' - yl' (6-62)

and the vertical position by the condition

(Z'_ - Z2
1  3y,'/yo' - /%(y,'/yo')2 - 1

2yo' = 2(yl'/yo)2 - yi'/yo' + (6-63)

Illustrative Example

To show how the vortex positions can be calculated in a particular
instance, consider the problem of determining the downstream distance
and vortex -positions for which vortex 1 has decreased its y' to 80 per cent
of its value at the trailing edge.

Y_-t . Yo' _ Yor _

y 0.s =- 0.555 b - 0.2775
Yo sm 4(2) '

Y" (0.8)(0.555) = 0.444
sm
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From Eq. (6-59)

sin T = 1 - 3(0.8 - 1.0)2 = 0.880
sin T" = 0.938 cos -r = -0.347

T = 110020'

In preparation for calculating the downstream position, we note that

E( , T) = 2E (Y, 7/ 2 ) - E(j , 7r - r) (2)(1.467) - 1.158
= 1.776

F(Y2, r) = 2K(Y2) - F( , ir - r) 2(1.686) - 1.91:
= 2.090

From Eq. (6-60) the downstream position is

d CL' = 3  1 0.938(-0.347) 1
Y - 1.083 + 1%(1.776) - 4(2.090) - [1 - X(0.88)]'IJ

= 3.04
d Cr,'d A - 3.04(0.2775) = 0.84
b A

The vertical position of vortex 1 from Eq. (6-61) is

= + 0.938(1.732 - 0.347)I- k 3(1.467 - 1.776) +2+-(3.04)

YO 2(1 - 0.22)' V

= 2.256
Z = 2.256(0.555) = 1.251
8m

The vertical position of vortex 2 from Eq. (6-63) is

(z'' )Z2'N 3(0.8) - Y2 (0.8)2 - 1

\o ) 2/ - j(0.8)2 - 0.8 + 1
2yof- 0.92
2 yo'

z2' = 2.256 - 2(0.92) = 0.416

-z2 0.416(0.555) = 0.2308m

The lateral position of vortex 2 from the constancy the lateral center of
gravity is

L/2- = 2yo' - L'= 1.110 - 0.444 = 0.666
Sm Sm 8m

The vortex paths as calculated from the analytical solution are shown
in Fig. 6-26 together with the pattern in the crossflow plane. The upper
vortices tend to pass downward and inward between the two lower
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vortices and to "leapfrog." If the-leapfrog distance is taken as that when
all four vortices are in the same horizontal plane, Eq. (6-60) yields the
relationship for dr.

dL 4.66AS L(6-64)

This result is the same form as that of Eq. (6-14) for the distance for an
elliptical vortex sheet to roll up, according to Kaden. Such a form would

0.8- - - - _ -

0.4 tA-71

2.0

1.2 /

0.8 1/  1 -- -

0.4
4 1

0- 0.4 0.8 1.2 1.6 2.0 2.4
0L d
bA

Mo. 6-26. Vortex positions behind panels of cruciform wing; 9 = 45*

be expected on the basis of the previous dimensional reasoning. For the
distance to roll up, the constant is 0.56, so that this distance is about one-
eighth the distance to leapfrog.

So far we have concerned ourselves with models based on one vortex
per panel. Some calculations by Spreiter and Sacks of 10 vortices per
panel of a cruciform wing arrangement give some insight into the shape
of the vortex sheet. For panels of equal span and for = 45', the wake

I
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shapes are shown in Fig. 6-27 for several distances behind the trailing
edge. The vortex sheets curl up into two wakes similar to th-)se observed
behind wings with elliptical span loading. The upper vortices move
inward and downward with respect to the outer vortices, which move out-
ward and upward with respect to the wing axis. The upper vortices in
approaching one another are accelerated downward between the lower
vortices and produce the so-called "leapfrogging."

,Z' C d 0 zo
7 0 0.17

/ ,I

ZI ZI

/ /
/ /

/
- /

/ /

0. 
0

I. /

/ -y%

r .6. Wak shpsbeida-rcfrr ig;p4'

%5

cin curc o an isl aplc
t

ios asfreopltoeo

5. i~ /

i g /
S/ ,/

/ /
/' /

/ /

/ /
/ ,,-- 5.

S"'. .. i

b FIG. 6-27. Wake shapes behind acruciform wing; 450

Series solutions for vortex paths can-be developed that provide suffi-
cient accuracy for many missile applications, as for exomple, those of
Alksne.7

SYMBOLSt
a radius of body
A aspect ratioof wing alone, or wing alone formed by two oppos-

ing wing panels
b span of wing alone,

bo function of x occurring in- W(3)

I



178 IusSILB AERODYNAMICS

b. span of horseshoe vortex
B (MG-
c wing chord at arbitrary spanwise station
C1 section-lift coefficient at arbitrary spanwise station
CL lift coefficient
CL' coefficient for force along z' axis
d distance behind trailing edge of cruciform wing
dL value of d for "leapfrogging"
6 distance behind trailing edge that vortex sheet is "completely"

rolled up
E elliptic integral of second kind
F elliptic integral of first kind
i, j summation indices for several vortices
k numerical constant depending on shape of span-load distribu-

tion
Kw lift ratio given in Table 5-1
L lift force
MO free-stream Mach number
n number of external vortices per wing panel replacing span-load

distribution
P pressure coefficient (p - po)/go
P+ pressure coefficient on lower surface
P- pressure coefficient on upper surface
AP loading coefficient P+ - P

qo free-stream dynamic pressure
qp induced velocity due to segment of vortex line
Dt component of flow velocity tangent to circulation contour
r distance between two vortices
so local semispan of wing alone
Sm maximum semispan of wing alone or wing-body combination
Sw area of wing alone
a, V, fv flow velocities along t, p, and 2, respectively
vI, v2  magnitudes of velocities induced by external vortex and image

vortex, respectively, at surface of circular body
V2(1) velocity -induced at vortex 2 by vortex 1
Vi velocity induced by vortex system
V4 velocity induced normal to circular body by external vortex

and its image vortex
VC, tDC values of V and fv due to potential crossflow around a circular

cylinder

V local flow velocity along streamline
Vo free-stream velocity
V Vo sin a,, crossflow velocity
tD u, fvc valuez of ?- at points B- and 0

_ _
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W(3) complex potential, 0 + iP
x, y, z missile axes of symmetry for a, 0 and o 5 0
x', y', z' missile axes of symmetry for a, 0 and p = 0
t, , missile axes of symmetry for a = 0 and p = 0
Yo' lateral position of vortex 1 at trailing edge in x', y', z' coordi-

nates (cruciform wing)
y1, lateral position of vortex 1 at stations behind trailing edge

(cruciform wing)
YC9 lateral center of gravity of right half of trailing-vortex sheet
Yi lateral position of ith vortex
P, 2V values of 9 and 2 for infinite line vortex in streamwise direction

a angle of attack
ac included angle
0angle of sideslip
71, I2 see Fig. 6-8
1 vortex strength of circulation, positive counterclockwise
Po magnitude of circulation at wing-body juncture or root chord

of wing alone
ri vortex strength of ith vortex
dP/dg strength of trailing vorticity per unit span

angle from : axis to plane of vortex sheet, positive downward
edownwash angle
01, 02 see Fig. 6-13
XI, X2  see Fig. 6-13
P0 free-stream density

sidewash angle
parameter specifying distance of vortex behind trailing edge of

cruciform wing
angle of bank

0. potential due to Vo cos f3, Fig. 6-4
potential due to Vo sin t, Fig. 6-4
potential on lower surface
potential on upper surface

ckw(R) potential of wing panel in presence of body
'4 e (€- - 0+) at trailing-edge of wing

semiapex angle of triangular wing
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CHAPTER 7

WING-TAIL INTERFERENCE

While the present chapter is entitled wing-tail interference, it could
equally well have been entitled lifting-surface, vortex interference. Vor-
tices passing close to a lifting surface can cause significant changes in the
aerodynamic characteristics of the surface. An important example is the
loss of tail effectiveness, which results from wing vortices which pass in
close proximity to the tail. Figure 7-1 pictures the physical situation

D

A A- -

~ST> SW

Fio. 7-1. Flat vortex sheet intersecting tailplane.

that gives rise to such wing-tail interference. Consider first the complete
configuration minus the wing panels. The tail panels will-then develop
lift that can be calculated by the wing-body interference methods of
Chap. 5. Now add the wing panels to the configuration. The addition
of these surfaces causes a general downwash field in the region- of the tail
panels, and thereby reduces- their lifting effectiveness. The loss of tail
lift can be directly ascribed to the-modification of the flow-field produced

-. by the vortices shed by the wing pajnils together with their images inside
the body. It is clear that any vortices, regardless of their origin, will in
passing close to the tail produce interference effects- similar to those pro-
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duced by wing vortices. In particular, the vortices originating near the
body nose at high angles of attack will produce such effects.

Methods for calculating the nonuniform flow field behind the panels of
a wing-body combination have been described in Chap. 6. The next
problem is to determine the reaction of the tail section to t'he nonuniform
flow field. The simple case wherein the wing wake is considered to be a
flat vortex sheet is treated in Sec. 7-1, and the reaction of the tail section
is calculated. In Secs. 7-2 and 7-3 we pass to the case of a completely
rolled-up vortex sheet and determine the loading and tail effectiveness on
the basis c slender-body theory. Tht idea of a tail interference factor is
developed in Sec. 7-4, and its application to engineering calculation of
tail loads is considered in Sec. 7-5. In Sec. 7-6, we consider some useful
results based on reverse-flow theorems for determining tail loads in a non-
uniform stream and the division of load between tail panels and body.
In Sec. 7-7, the subject of shock-expansion interference is considered.

7-1. Wing-Tail Interference; Flat Vortex Sheet

The simplified model of the flat vortex sheet to represent the wing wake
can be utilized to illustrate the important features of wing-tail interfer-
ence and to provide a useful quantitative measure of tail effectiveness.
For a sufficiently slender wing-body combination, Ward' finds that for
an afterbody of constant diameter the vortex sheet is flat and coplanar
with the wing. Under these conditions the flow behind the wings will be
parallel to the tail chord for the midwing and midtail configuration
shown in Fig. 7-1. The tail sections within a semispan equal to that of
the wing will thus carry no lift. The vortex sheet can, in fact, be thought
of as an extension of the wing surface to the tail to form a single panel of
wing and tail (ABCDE) for the case when the tail span is greater than
the wing span. This simple result was pointed out by Morikawa.2 In
accordance with this result, the lift of the wing-body-tail combination
including nose lift on the basis of Eq. (5-13) is (a = constant)

___-T 
2 7rsT2 (1 _ a2 a4_, LB (7-1)

q0a =7,2 1T 4,/ qoa

when Sr > siv. The lift for the wing-body combination is

-Dw = 2rswV2 1 - 2 + a4 I (7-2)qooa 81 2  
T

and-the lift of the body alone-is

L.. 2ira 2  (7-3)q0oa

A convenient measure of the- degree of severity of the wing-tail inter-
ference is the tail effectiveness. The tail effectiveness is defined as the
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ratio of the lift developed by adding the tail to fhe wing-body combina-
tion to that developed by adding the tail to the body alone.

Lw- L~w (7-4)LDT LBL

The tail effectiveness is thus a measure of bow much the tail lift has been
reduced by interference from the wing panels. If wing-tail interference
does not reduce the tail lift, -q7 is unity. If, however, the tail lift is
entirely canceled by interference, 7r is zero. While the tail effectivenells

8? 8
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FrG. 7-2. Tail effectiveness for flat -c.rtex sheet.

has been defined on the basis of lift, it is clear that a similar effectiveness
can be defied for pitching moment. The moment effectiveness will
differ slightly from the lift effectiveness, since the tail center of pressure
will in general not be the-same with wing-tail interference as without it.

For the case sT > sw the tail effectiveness is

,T (1 - a 2/ST )28T 2/a 2 
-- (1 - a2/sw2)2sw2/a2  (75)

(1 -
2)

For the-case sw > sT the- vortex sheet from the wing passes through the
plane-of the tail for the present model. Since vortex lines follow stream-
lines, the tail is at zero angle of attack locally-and generates no-lift. For
-this case, then,

-= 0 (7-6)

4 0
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When the tail span is less than the wing span, the tail is thus totally
ineffective. How the tail efficiency for the present model actually
depends on the parameters a/ST and a/sw is shown in Fig. 7-2.

The foregoing calculations- of tail efficiency are based on a model of the
vortex wake which is not fully representative of a missile on several
grounds. In the first place, the vortex sheet is not flat but has rolled up
at least in part by the time it has reached the tail. Second, the vortex
generally lies closer to the free-stream direction than the extended chord
plane, as shown by Fig. 6-18 and by many schlieren photographs. Thus
for positive angles of attack the wing vortices will generally lie above an
inline 'ail and thereby produce less adverse interference.

7-2. Pressure Loading on Tail Section Due to Discrete Vortices in Plane
of Tail

The -fully rolled-up wing vortex sheet represents a model of the wing
wake that can-be considered the opposite extreme of the flat vortex wake.
For the vortices in the plane of the tail we will now derive a solution for
the tail pressure loading based on slender-body theory. The model for

'vo Cos

V0 sin a

FIG. 7-3. Discrete line vortices intersecting tailplane.

which the solution is obtained is shown in Fig. 7-3. This model is decom-
posed into a tail-body combination acting at angle of attack a without
vortices, and one acting at a = 0 with vortices. In this decomposition
we note that the angles of attack of tail and body add up to a and the
free-stream velocities add up to Vo acting at angle of attack a. With
regard to the vortex itself, it can be replaced by a small solid cylindrical
boundary. The-circulation around-this small boundary is zero for 0, and
produces no effect on the flow; but for ov the circulation is taken as r.
Since the vortex -is specified to- lie in the plane of the tail, it must be held
in position by a force. Because the potentials 0, and ov are applied to
the same physical boundaries and obey the-same linear differential equa-
tion, they can be added to obtain-the potential for the complete combina-
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tion at angle of attack a including the vortices. But it is not obvious
that the loading coefficients are additive, even if the potentials are,
because of the usual squared terms in Bernoulli's equation. The velocity
components in the x, y, and z directions have simple symmetry for the
vortices lying in the plane of the wing, and it is shown in Appendix A at
the end of the chapter that the square terms do not contribute to the
loading under these circumstances. Thus the loading coefficients associ-
ated with 0a and Ov are additive. If P+ and P- denote the pressure
coefficients on the lower and upper surfaces, respectively, then

Ap,, = p+ - 6-0 V O
VO OX(77)

APv = Pv +  Pv-  4 aVo 0 (x +

AP,+v = AP, + APv (7-8)

It is appropriate at this time to specify more precisely the limitations
of the solution arising from the fact that the vortices are assumed to lie
in the plane of the tail. If the vortices attempt to-move vertically out of
the plane of the tail, it is necessary to apply lateral forces parallel to the y
axis to -keep them in the plane. Thus, if the vortices are free to move
laterally in the plane of the-tail, there-will be no change in-the Z force or
loading due to constraining them to lie in the plane.

Let us now turn to the problem of determining Ov and APv. Consider
the cross section of the actual tail in the a plane with a pair of symmet-
rically disposed vortices of equal but opposite strength, as shown in Fig.
7-4. Because ,he -,xternal vortices produce velocity normal to both body
and panels, a tairly complicated image system must be put inside the
cross section to cancel the normal velocity. Image vortices at the
inverse points inside the body wilL satisfy this requirement for the body
but not for the panels. Images will thus be required which satisfy the
panel normal velocity condition without at the same time violating the
normal velocity condition for the body. A simple means of determining
this image system is to transform the tail cross section into the unit
circle for which the image system is known. The required transforma-
tion is

a2  +a2\ \+- + = - +t (7-9)

Solving the transformation for a yields

- :1 - a  i] (7-10)

a2  (7-10)
where A s (7-11)

8

-_I_
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The plus sign is to be taken for the top surface and the minus sign-for the
lower surface. The points 1, 2, 3, and 4 are shown in -the twe planes.

The image system in the a plane is obtained in the usual manner by
introducing images inside the circle. The complex potential due to the
complete vortex system is with reference to Eq. (4-77)

WV =0V + 4V t-o (0 - 0-v)(G + 1/rv)

F-7"i (o + v)(o- 1/ev)
il (0 - i/0) - (UV - I/av) (7-12)
= log - i/a) + (8v - 1/v)

In the transformation back to the a plane, symmetrical external vortices
appear, together with the necessary internal images. This transforma-

I plane a plane

21

r r 0V
3 

34

ly

Case 2 Case 1
_ _ -I

Fia. 7-4. Transformation of tail cross section into unit circle.

tion is accomplished with the aid of the following equation which refers to
the upper surface 1 r(l+a2/)2 ]

--- = 2 [(; - 1 (7-13)

The potential in the 3 plane- depends on whether the vortex span is less
than or greater than the local tail span.

Case 1: sv < 8
The tw. o cases arising in the present solution are illustrated in Fig. 7-17.

In case 1, the vortex is inboard of the leading edge of the tail panel, so
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that sv < s. In the o* plane the external vortices lie outside the upit
circle just opposite their images. If the external vortices actually move
onto the circle, they are identically canceled by their images. The com-
plex potential thus becomes identically zero. To shov this mathemat-
ically, let av lie on the unit circle. Then it is easy -to see that

O 1V - a i -- v -V (7-14)

As a-result Eq. (7-12)- yields

Wv = 0v+ v= (7-15)
Case 2: sir > s

A. Tail panels: Instead of Eq. (7-13) for ov - 1/(v we now -have

1 [(sv + a2/sv) 2  ]
0V - - - 2 A2 -1J (7-1)

The logarithm is now a complex quantity, and the complex potential
possesses a real part,

= tan_ _
7r n

F s + a2/sv) 2 
_

-= -(s + a2/s)1 (
n-E _(y + a/y)2]1

wherein positive roots are-to be taken and the value of tan - 1 (m/n) ranges
between 0 and 7r/ 2 .

B. Body: On the body we have

1 ( 4y2 i
=2i 1- T(7-18)

and the potential is

- tan- [(sv -- a2/sv) - (s + a2/s)2(1
k -1 (s + a2/s) 2 -4y J (719)

We-now pass to the determination of the loading coefficient APv.
40 ad o- s + _ Ov dsvIAPV F (O, ) = ± U ° (v) (,-

+ - (5v-)dL' (7-20)

Loading coefficients can thus be associated with the rate of change of
panel semispan, with-lateral movement of the vortices, and with changes
in body radius. We consider only the first two effects. For the panels
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the loading coefficient is

-PV 4r (s/a + a/s) (1 - a/s 2 ) ds/dx
APV- ea Ksv/a + a/sV)2 

-(s/a + a/S)j 3 l

[(s/a + a/s)2 - (y/a + a/y)2IFl

+r (s v/a + a/sv) (1. - a2/sv 2 ) dsv/dx
+ Voa [(sv/a + a sv)' - (y/a + a/y)21E(s/a + a/s)2 - (y/a + a/y)2 ]

(sv/a + a/SV) 2 - (s/a + as 2 J (7 21)
and for the body

A - 4r (s/a + a/8)(1 - a2/s92 ) ds/dx
7rVoa f(s/a +1 a/s)2 - 4y'/a2I'

f(sv/a + a/s3V) 2 
- sa+a/)J

+4_j (sp/a + a/sv) (I - a2 /SV2 ) dsv/dx
+ ~o [(sv/a- + a/sv)2 - 4y2/a2j

[ (sa + a/)2 - 4y 2/a2 1
Ksv/a + a/sv)2 - (s/a + a/s)2j (7-22)

The loading given by these expressions is illustrated in Fig. 7-5 for tri-
anguloqr panels. It ism~ote-worthy that the -loading associated with posi-

ar

F/Voa

Rim. -V.-5. Types-of luadings associated with-discrete vortices in plane of tail.
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tive ds/dx is negative, and that associated with positive dsv/dx is positive.
Significant differences exist in the shape of the two loadings.

7-3. Lift on Tail Section and Tail Efficiency for Discrete Vortices in
Plane of Tail

Having determined the potential and loading on tail and bcdy for dis-
crete vortices lying in the plane of -the tail, we are now in a position to
determine the tail lift and effectiveness. It will also be interesting to
compare the tail effectiveness for a fully rolled-up sheet with that -for a
flat sheet. The tail lifts for the panels and the body can conveniently be
set up in terms of the potentials given by Eqs. (7-15), (7-17), and (7-19).
With reference to Fig. 7-4, the lift on the tail panels due to the vortex is

Lr(B)v _ 2 f APv dx dy
qo jai

- 8 f [( v+),. - (4v+),o] dy

Correspondingly the lift on the body due to the vortex is

Ld(T) v -2 f APy dx dy
qojo

= - f [(Ov)t - (4,v)1.-dy (7-23)

In the foregoing formulas one integi .tion has essentially been performed
by passing to the potential, and it remains for us to perform another
integration. We will-confine our attentions to the case where the vortex
intersects the tail, sv < sr.

Consider the -potential field acting on the tail panels. With reference
to Fig. 7-4 we have the potential-at the leading edge

r
=- E < 8V

0) 2 s > 8V (7-24)

The lift on -the panels is thus

LT(B)V _ 8 f 0 -- [ dy = 4 -V 1 (7-25)

qO O a~L k2J Vok a
For the body, the "leading -edge" -is taken as the diameter joining the
leading edges of the tail-body junctures. From Eqs. (7-15) and (7-19)
we have

,. (@v+)z - I= r tan 8s/a' - ar/sv
'v+). - - tan- 2(1 -8 y2/aT2) SV < (7-26)

-(4iv+),.- 0
7r 21yIal)
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The lift on the body is thus

_BT) 817 fC tan-, .sv/ar - aTI/8Vdy
qo 7rVo Jo 2(1 - yl/arl) d

1--i (7-27)VO ( !V

The shapes of the span loadings given by (Ov+)t - (ov+), are illustrated

A---------A

Vortex

4I t
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FIG. 7-6. Span loadings associated with straight-line vortices in plane of tail.

in Fig. 7-6 for the trailing edge taken at various streamwise- positions.
The total loss of -lift due to the vortex is

Lv_ Lr(D)v + LB(T)y = 4ra(a (7-28)

qo qo V0 OT ,v/ (

The tail effectiveness can now be determined with the aid of the following
u.quation:

1 -1 -Lv (7-29)
Bapo (c =LT - La

By apparent-mass methods (See. 10-8), it-is easy to-show-that
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LBT - LB = 27rsrlqoa (1 (7-30)

so that the tail effectiveness is

(sr/aT - at/ST)2 - (2r/raVoa) (sv/aT - ar/sv) (7-31)
= (S/aT - a /8)7

The foregoing result for the tail efficiency is in terms of vortex strength
and position as parameters, and it is of no particular importance how the
vortices arise. However, when the vortices arise by virtue of the wing
panels, the tail effectiveness can be expressed solely in terms of the dimen-
sions of the wing-body-tail combination. Based on the vortex model of

r

L -------------- L

FiG. 7-7. Model of-wing vortices impinging on tail.

Fig. 7-7, the iortex strength is equal to the circulation at the wing-body
juncture given by Eq. (6-39).

r _ Sw_ awr ar arc(7-32)
2Voawa aw sw(

Another relationship- between the lifts and vortex strength based on
slender-body theory and lifting-line theory is

LWB - LB _ 2poVor(sv - aw2/sv) - 2 \ -w -\ (733)
qoa gsa -rwl( Sw 2) 7-3

Trhe foregoing equation yields -the relationship between wing span and

vortex span
sv aw 7r 8w aw

a-w sw (

The tail effectiveness can now be expressed in two alternate forms

_(STr aT/Sr )2 
- (sw/laiv - aW/SW) 2

?7 - (sr/a - a/sr)2  sV < Sr
(sr/ar - aT/sr)2 - (161ir2)(svlaw - awlsv)2  (7-35)

(sr/at - aT/st)2 si <sT
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It is interesting to compare the tail effectiveness for the present case,
Eq. (7-35), with that calculated for a flat vortex sheet, Eq. (7-5). Alge-
braically, the expressions are identical, but the flat-sheet case was derived
on the basis that sf < sr, whereas the present case holds for sv < sr.
The minimum tail effectiveness is 0 for the flat-sheet case and -0.62 for
the present case. As the vortex sheet rolls up, more vorticity is concen-
trated inboard where it can intersect the tail panel. Thus, the lower
minimum tail effectiveness results for the rolled-up vortex case.

Wing-tail interference is usually most adverse for a vortex of fixed
strength when the vortex lies in the plane of the tail panels. For a com-
bination with the wing and- tail mounted centrally on the fuselage, wing
deflection can produce a vortex in the plane of the tail. If, however, the
tail is above the wing, this condition will prevail at- some positive angle of
attack. For a midwing-midtail combination with no wing incidence, the
vortex strength will be very small for the small values of a for which the
vortex lies nearly in the plane of the wing. The interference will be most
adverse for -some positive angle of attack (for which the vortex does not
lie in the plane of the wing), because the vortex strength increases with
angle of attack. The case of the vortices not lying in the plane of the
wing will subsequently be discussed in connection with the tail interfer-
ence factor.

7-4. Tail Interference Factor

The interference produced by a vortex on a lifting-surface depends on
the strength of the vortex and its position relative to the lifting surface.
It seems desirable to set up a nondimensional measure of -this interference
which depends on, vortex position but which is independent of vortex
strength. Tail effectiveness depends on vortex strength and -is thus not
such a measure. Therefore, let us consider a quantity called the tail
interference factor iT. Now for a fixed vortex position the local induced
velocities at the lifting surface will-be-proportional to the vortex strength.
They will produce effective twist and- camber of the surface proportional
to vortex strength. Thus, for a vortex of fixed position the lift on the
lifting surface is proportional to the product of the vortex strength and
lift-curve slope of the lifting surface. Let -the strength be expressed in
the nondimensional form r/voi, where 1, is a reference length. Let the
lift per degree of the tail alone be written Lr/a. The lift on- the tail- sec-
tion-due to the fixed vortex is then

LBTV C VLL '  (7-36)

It is-convenient for our purposes to use a reference length based on tail
dimensions, namely, 27r(sr - aT). The constant of proportionality in
Eq. (7-36) is -then -defined as the tail- interference factor i,.

45
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1r Li (7-37)
Ln, T2 2,rVo(sT - a2) -e

LBTV/Lr
r/27rVoa(sr - a) (7-38)

It should be mentioned that LBTv is usually negative so that ir is negative.
The tail interference factor can be interpreted as the ratio of two non-

dimensional quantities, the first of which is a lift ratio and the second a

r r
, Yv - :D --

2.0

k -IT -0

00.4 0.8 1,2 16 2.0 24 28

FIG. 7-8. Chart of tail interference factor based on strip theory; X, = 0, (a/8)r = 0.2.

nondimensional vortex strength. The appearance of a lift ratio has the
effect that, even if -the particular theory used to obtain iT is known to pre-
dict the lift incorrectly, still it may be suitable for evaluating iT since it
may predict the lift ratio correctly. It will be recalled that the use of this
stratagem in predicting Kw and KB by slender-body theory led to prac-
tical interference calculations for nonslender configurations.

The tail interference factor can be calculated by such methods as
slender-body theory, strip theory, and reverse-flow methods. A particu-
larly simple method for calculating iT is through the use of strip theory,
and it has the flexibility of not being dependent on Mach number. A set
of-iT charts based on strip theory' has been drawn up for various values of
the parameters (a/8), and tail taper ratio XT. A typical chart from this
group is shown in Fig. 7-8. It is to-be noted that the chart is-for a pair of

I
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equal and opposite external vortices symmetrically disposed with respect
to the vertical plane of symmetry, and that the chart is similar in all four
quadrants. The magnitude of iT is greatest near the tip of the tail panels.
Thus, care should be taken in design to -keep strong vortices from entering
the region of the tip of the tail panels.

Illustrative Example

Calculate on the basis of slender-body theory the relationship between
the tail effectiveness and the tail interference factor for the vortex-model
shown in Fig. 7-7. The definition of tail- effectiveness gives

LBT v

1 - -= LET - LB

From Eq. (7-30) aT2\2
LBT - Lu = 2 rST 2qoa 1 - T-2)

and from Eq. (7-37)
rLB~ =ir VoST--ar [27r(ST - aT)Iqol

Lwrv(S - 27r(S r 2 o

These relationships give- the tail effectiveness

rST2

1 -- 7T = -T 2rVoa(sv - aT)(Sr + aT) 2  (739)

Since iT is independent of r, the tail effectiveness depends on r. When
the vortex strength can be expressed in terms of wing dimensions as for
the present case using Eq. (7-32)

r aw(sw/av - aw/so,) (7-40)
2arVo0((s - aT) 7r(37, - aT)

The tail interference factor is
(ST - aT)(Sr + aT) 2

awST2 (sw/aw - a,,/sw)

'7-5. Calculation of Tail Lift Due to Wing Vortices

The tail interference factor discussed in the preceding section simplifies
the calculation of tail lifts. Let us set up the necessary equations -for
calculating the tail-lift for a planar missile (or a cruciform missile at zero
bank angle) due to wing-vortices. Consider one vortex per wing panel.
This vortex strength is obtained by equating the lift on the wing psnels
calculated by use of Kw to the lift as calculated by lifting-line theory.
On the basis of the wing-body interference methods of Chap. 5, using
K,, we obtain

Lw(n) Kw(CL,)wSWqo0a (7-42)
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Likewise the lift of the panels based on the lifting-line model of Fig. 5-17
is

Lw(B) = 2pVoro(yv - aw) (7-43)

where yv is the lateral position of the wing vortex, and ro is the circulation
strength at the wing-body juncture. Thus we have the vortex strength

_ Vo(aKw) (CL.) wSw (744)
ro - 4 (yv - aw)

When this vortex strength is introduced into Eq. (7-37), the lift on the
tail section due to the wing vortices takes the form

a= ,,Kw(CLa)W(CL.)TSwSTqo (7-45)
L T - r(ST - aT)(yv - aw)

We convert to lift coefficient form on the basis of a reference area SR.

L8 rv = KW(CLa)W(CL.)T(ST - aT)SW/SR (7-46)
CLBT)V = 27rAT(yV - aw)

The angle of attack is in radians, and the lift-curve slopes are per radian.
To make engineering calculations using Eq. (7-46) requires a knowledge

of the vortex position at the tail section. The factor iT depends on such
information. Let (yv/s)T and (zv/s)T be the lateral and vertical positions
of the vortex associated with the right tail panel in the crossfiow plane
through the centroid of area of the tail panels. These quantities can be
determined in several ways. First, the positions can be determined by
the step-by-step procedure described in the preceding chapter. Such a
procedure is lengthy, and some simplifying assumption is usually war-
ranted. Thus, we come to the second method based on the assumption
that the vortices trail back in the streamwise direction from the wing
trailing edge. To demonstrate the use of Eq. (7-46) and the simplifying
assumption, let us perform a sample- calculation.

Illustrative Example

With reference to the wing-body-tail combination of Fig. 7-9, calculate
the lift on the tail section due to the wing vortices and the corresponding
tail- effectiveness for the conditions M0 = 2, a = 50, and A3 = 0.

As a first step let us ascertain the vortex lateral and vertical locations in
the crossfiow plane at the centroid of the tail panels. The lateral position
at the wing trailing edge for a single vortex per panel is obtained with the
help of Table 6-1.

- 0.5625 = 0.2
w .2.812( - = 0.70 Table 6-1

!a W

(Yv) w = 0.5625 + 0.76(2.25) 2.27

I7
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Wr. ueglect any lateral motion of the vortex which is assumed to trail back
in a streamwise direction. Thus

T 1.812 1.25

The vertical height at the wing trailing edge is 0, and the tail centroid is

2,812/I

' 9.-1. 1 .25

10.5 -

FIG. 7-9. Wing-body-tail combination of illustrative example.

3.99 -units behind the trailing edge of the wing measured parallel to the
body axis. Thus

(ZV)T = 3.99 tan 50 = 0.348
z) 0.348

_8 1.812
The value of XT is 0, and of (a/s)T is 0.31. Actually, iT is a slowly varying
function of XT and-of (a/s)T for small-values of (a/sm)T. For instance, the
value of iT for X7 = 0, (a/s), = 0.2, from Fig. 7-8, is -1.85, and for
(a/s)T = 0.4 from Pitts et al.3 is - 1.75. Let us use a value of iT = - 1.8.

Turning-now to the other quantities in Eq. (7-46) we obtain

Kw = 1.16 Table 5-1

Since the leading edges of the wing and tail panels are supersonic for
M0 = 2, the lift-curve slopes of the wing alone and tail alone are equal to
the two-dimensional lift-curve slope

4 4
(CLOW (Cr,.)2 - (M - = "= 2.31 per radian

I ________
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Taking the reference area as Sw, we now have all the quantities necessary
for evaluating the lift increment on the tail section due to the vortices.

(5/57.3)1.16(2.31)2(1.812 - 0.561)(1)
27r(4)(2.27 - 0.56)

= -0.029

We now consider the tail effectiveness. Based on the wing-alone area
as a reference area, the tail-body combination and the body alone have
lift-curve slopes of 0.0282 and 0.0069 per degree, respectively, calculated
by the method of Chap. 5. The tail effectiveness is

- (CLIT)V - 0.029
1 - nr = (CL)DT - (CL)B 5(0.0282 - 0.0069) 0.27

nT = 0.73

The tail effectiveness has been reduced 27 per cent as a result of the-
adverse effect of wing-tail interference.

Let us examine- the lift and moment curves for the example configura-
tion as presented in Fig. 7-10. The effect of wing-tail interference on the
lift is not large, which is not surprising in view of the fact the wing is much
larger than the tail. The effect on
pitching moment, however, is con- 0.6 - No wing.tail interference
siderable, because of the large "le- --- With intbrference
ver arm" of the tail. The moment 0.4 ell
curve is now nonlinear, and the com- /
bination becomes more stable as the 0L
angle of attack increases, although 0.2-
wing-tail interference decreases the -

static margin by about 3 per cent of 7
the combination length at a = 0°. 0 4 8 12 16

Let us consider the nonlinearity a
exhibited by the moment curve in 0
greater detail. As the angle of at-
tack increases, the vortex strength C.
increases linearly. If the vortex po- -0.04 -

sition remained fixed with-respect to L
the tail, the adverse effect of interfer-
ence would also be proportional to a, Fxa. 7-10. Calculated lift and moment

and the moment-curve slope would curves of example configuration.
be constant. However, as the tail
moves- down with increasing angle of attack, it moves away from the
vortex, which trails back streamwise from the wing trailing edge. The
lift on the tail due to the vortex is thus less than proportional to a, as
exhibited by the difference- between-the two moment curves-in Fig. 7-10.
The net effect is an increase in stability -dO,,/da as a increases.
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It would be inferred from the foregoing argument that, if the tail
approaches the vortex as a increased, there would result a decrease in
stability. Such an effect would in fact occur for a high tail position as
illustrated in Fig. 7-11. After the tail passes through the vortex and
starts moving away from it, the stability would again increase as illus-
trated. It should be noted that this effect can also occur for a cruciform

'V V

a a

NCm

No wing.tail interference
--- With interference

FIG. 7-11. Effect of tail height on moment curve of complete configuration.

tail interdigitated with respect to the- wing panels. The upper panels of
the tail will -move toward the wing wake -as a increases and exhibit the
typical high-tail nonlinearity in the moment curve.

7-6. Use of Reverse-flow Method for Calculating Aerodynamic Forces
on Tail Section in Nonuniform Flow

We have-considered methods for calculating the aerodynamic forces on
tail sections based- on slender-body theory and on strip theory. Another
powerful method for ithis-purpose is to be found-in the reverse-flow theo-
rems of linearized theory. These theorems are based on an-application-of
Green's theorem to -second-order partial differential equations with cer-
tain mathematical symmetries. We. forego the pleasure of -reproducing
the- elegant derivation of the reverse-flow theorem we will use, but -refer
the reader to -Heaslet and Lomax' instead. We will be particularly
interested in the reversibility theorem involving pressure coefficients -and
angle of attack. Consider a tail-body combination consisting of circular
cylinder and flat panels inclined at such small angles to the flow direction
that the boundary condition of no flow normal to the solid boundaries can
be applied -on surfaces parallel to the flow direction. Let the combina-
tion in direct flow (Fig. 7-12) have local pressure coefficient P and local
angle-of attack a,. Let the corresponding quantities at the same point in
reverse flow be P2 and a2. Then the particular reverse-flow theorem
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germane to our purpose is

fgAS+&at  d2 S = ffsr+Sa, Pia2 d,3 (7-47)

Here the quantities P2, a2 are measured at the same point as the quantities
Pi, al. Because all surfaces are taken- in the streamwise direction, Eq.
(7-47) applies equally to flows obeying Laplace's equation at subsonic
speeds and to flows obeying the wave equation at supersonic speeds.

Let us now consider how the theorem is used to determine the aero-
c namic forces on the tail in the nonuniform field produced by a vortex.
C usider the tail panels to be at zero incidence, and let body and tal be

Direct flow Reverse flow
Fia. 7-12. Configuration in direct and reverse flow.

CtB  + 0

A - B + C
FIx. 7-13. Decomposition of twisted tail configuration into components.

at angle of attack aB. The vortex system external to the body will pro-
duce velocities normal to the wing and body. The velocities normal to
the body are canceled by introducing image vortices in the usual manner.
The vortex system and its images then produce angle of attack ay on the
tail panels. The tail panels can be considered to be cambered and
twisted to conform to av. If cv depends only on lateral position and
does not vary chordwise, then the tail panels are only twisted but not
cambered. The final configuration thus has the bovly at angle of attack
aB and the tail panels effectively at angle of attack as + av as-shown in
Fig. 7-13. The configuration is decomposed into two configurations B
and C. The lift of configuration 0 is that due to the vortex, and it will
now be calculated using reverse-flow methods.

Let us take for the conditions of direct flow the boundary conditions
shown for configuration C of Fig. 7-13.

a, = 0 onSB (748)
ai = av on ST
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Take as the boundary conditions for reverse flow unit incidence of the tail
panels as shown in Fig. 7-14.

a2 = 0 on 3B
02 = 1 on ST (7-49)

A direct application- of the reverse-flow theorem, Eq. (7-47), yields

ff8T Pi d, =Jf8 P~av dST (7-50)

Since the first integral of the preceding equation represents the force on
one surface of the tail panels due to the vortex, we have

q0 = 2 f r P2Cav dS (7-51)

Let-the angle of attack due to the vortex av be one of pure twist. Then
integration with respect to x yields

qo 2 18 aV(ccz)2 dy (7-52)

ftc
where (cc)2 = 2 P2 dx (7-53)

The quantity (Ccz)2 is the span loading due to unit incidence of the tail
panels. Equation (7-52) can be given the interpretation of integration
across the span of the local angle-of attack with (cc,)2 as weighting factor.

A P2, (cc0 2

Direct flow Reverse flow
FIG. 7-14. Special configuration in direct and reverse flow.

Thus, if the span loading is known in reverse flow for a tail-body combina-
tion for unit tail incidence, then it is possible to determine the gross-lift on
the tail panels due to the vortex. It should be noted that the simplifica-
tion of calculation achieved by the use of the reverse-flow theorem is
made possible because we desire to obtain a gross force. No details con-
cerning the span loading on the tail panels due to the vortex are given.

It must not be forgotten that the body will carry lift which is trans-
ferred to it by the tail panels, and we now proceed to a consideration of
this problem. For the reverse-flow condition, let us-take

a3 = 1- on S(
a3 = 0 on ST
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and retain the same direct-flow conditions. A direct application of Eq.
(7-47) yields ff P1 dS 8 Pv dST (7-55)

where P3 is the pressure coefficient due to unit angle of attack of the
body with ap = 0. Performing an integrrtion with respect to x yields

qo = 2 P3v dS, - 2 j (cc,) sav dy (7-56)

The lift on the body due to the vortex car, thus be calkulated using strip
integration with (ccz)3 as weighting factor. We car obtain the total lift
in one integration if we assume that both body and tail are at unit inci-
dence in reverse flow

a4 =1 on SB

a4 =I on ST (757)

and let (CC,)4 be the corresponding span loading

Lr(B)v + LB =-r LBT = 2 (cc) 4v dy (7-58)qo qo

It is possible to evaluate the moment by considering the reverse-flowcondition
a = x on SB and ST (7-59)

A direct application of Eq. (7-50) yields

MT; = ffS, Pix dS = 2 (cc,) 6av dy (7-60)

Likewise, if the reverse-flow conditions are taken to be

as = Y ST (7-61)
then the rolling moment due to the vortex is

L'BV- PY dS = 2 f (CcI)6av dy (7-62)
qo r

7-7. Shock-expansion Interference

If the emphasis on wing-tail interference due to vortices has created the
impre!,ion,) that other types of wing-tail interference do not exist, such an
impression is unintentional. For a missile employing a horizontal tail
above the wing, another type 3f interference is quite possible, namely,
interference due to the action of the wing shock-expansion field on the
tail. If the Mach number is -sufficiently high, a horizontal tail in line
with the wing can also fall within the wing shock-expansion field at angle
of attack. An approximate analysis of shock-expansion interference is
to be found in Nielsen and KaattariJ
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Let us now briefly consider the qualitative aspects of shock-expansion
interference of the wing on the tail. Consider the high-tail missile shown
in Fig. 7-15 for a = 50 and a = 200. The shock-expansion field shown is
that of the wing on the assumption of a two-dimensional flow field. At
a = 50 the tail is shown partially between the expansion fan frc the
leading edge and the shock wave from the trailing edge. Note fi. .h
of the streamline going through the expansion fan. It is approxNu,
parallel to the wing chord. If the tail is set parallel to the wko-
the tail will be essentially at zero angle of i..V.Lc with respect to f1le t,,,
flow direction. As a result it will develop very little nose-down ioment.
The tail effectiveness is thus nearly zero.

Expansion fan
/ / Trailing-edge

/ / shock wave

/ I, /

/1 / /

// //"

Fzo. 7-15. Interference of wing shock-expansion field-on tail.

If -the angle of attack is now increased to 20', the situation is altered
greatly. As the angle of attack changes, it is a property of the shock-
expansion field that the trailing-edge shock -wave remains nearly fixed in
direction with respect to the free-stream velocity. The tail therefore
moves beneath the shock wave. Here the flow direction is very closely
in the free-stream direction so that the tail has recovered almost all its
effectiveness. There is some slight loss due to changes in Mach number
and dynamic pressure resulting from the entropy increase through the
shock wave.

From the preceding description of the flow changes -at the tail due to
the wing shock-expansion field, -it is possible to see qualitatively the influ-
ence of the interference on the -contribution of the tail to the pitching
moment (ACm)T. With reference to Fig. 7-16, the values of (ACm)T for
T=0 and n =1 are shown as a function of a. For a =5 the tail

--
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effectiveness is rear zero, and for a = 200 near unity. The correspond-
ing curve is sketched qualitatively on the figure. If the missile were in
trim at a = 5O, the interference in this case would have a stabilizing effect
for increases in angle of attack.

4+

0r-

0 5 10 15 20
a, deg

FIG. 7-16. Tail- pitching-moment contribution- with -shock-expansion interference.

One fact that is clear from the discussion is that shock-expansion inter-
ference can be sensitive to Mach number. This characteristic differenti-
ates it from wing-tail interference due to wing vortices.

SYMBOLS

a radius of circular cylinder
ar radius of circular- body at tail
aw radius of circular body at wing
A s + a2/s
A7, aspect-ratio of surface formed by joining tail panels together
c local chord of wing or tail panel
01 section lift- coefficient
(cc:) span loading
(ccI)2  span loading due to unit incidence of tail panels in reverse

flow
(cc) 3 span loading due to unit incidence of body with tail panels

at zero angle of attack -in reverse flow
(cc1)4 span loading due to unit incidence of tail-body combination

in reverse-flow
(eel) 5 span loading for tail-body combination in reverse flow

cambered so that the angle of attack equals x
-(ccl)e span loading for tail-body combination in reverse flow

twisted so that the-angle of attack equals y

i

tI
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C lift coefficient
CL. lift-curve slope
C", pitching moment about y axis
ir tail interference factor
K,, wing-body interference lift ratio
l1 reference length
le leading edge
L lift force
L' rolling moment about body longitudinal axis
M pitching moment about y axis
Mo free-stream Mach number
P2, P3, etc. pressure coefficients associated with (cC0 2 , (ccz)3, etc.
P+ pressure coefficient on lower surface
P- pressure coefficient on upper surface
AP P+ - P-
(10 free-stream dynamic pressure
s local semispan of wing-body or tail-body combination
ST semispan of horizontal-tail in combination with body
sV semispan of vortex
sW semispan of wing in combination with body
SB area of body planform in empennage
S11 reference area (arbitrary)
ST area of horizontal tail panels
SW area of wing panels
te trailing edge
it, v, w components of flow velocity along x, y, and z axes
V velocity in crossflow plane at vortex location
V0  free-stream velocity
Wv complex potential due to vortices
X, y, z system of axes lying in planes of symmetry of the missile

with the origin on the body axis at the location of the
leading edge of the tail-body juncture, Fig. 7-4

yv, ZV coordinates of vortex associated with right tail panel
a y+iz
a angle of attack
a2, a3, . . . angles of attack associated with (cc) 2, (cCI)3, . . .

ay angle of attack produced at given spanwise position by
vortex system

angle of sideslip
r vortex strength, circulation
ro. strength of bound vorticity at wing-body juncture
?r tail effectiveness
Xr tail taper ratio
PO free-stream density
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complex variable of transformed plane in which empennage
cross section.is a unit circle, Fig. 7-4

ov position of right external vortex in o plane
potential of tail-body combination in absence of vortices

kv + i4v Wv, complex potential due to vortex system

Subscripts:

B body alone
B(T) body section influenced by presence of horizontal tail
BT body-tail combination; empennage
BW body-wing combination
BWT body-wing-tail combination
T surface formed by joining horizontal tail panels together
T(B) tail panels in presence of body
V due to vortices
W wing alone
a due to angle of attack
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APPENDIX 7A. PRESSURE COEFFICIENT FOR COMBINED INFLUENCES
OF ANGLE OF ATTACK AND VORTICES

For the body coordinates used in the present analysis, the pressure
coefficient is given by Eq. (3-52) with a =c, and vp 0,

P -2(u + aw) - (v2 +- w2) (7A-1)
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where u, v, and w are the perturbation velocities along x, y, and z for unit
free-stream velocity. The vortex patterns in the a plane for case 1,
sv < s, and for case 2, sv > s, are shown in Fig. 7-17. For case 1, we can
immediately conclude that there is no loading due to the vortices. This
result follows from the fact that the image vortex is as far inside the
circle as the external vortex is outside, so that, when the external vortex
approaches the circle in the limit, the two vortices annihilate each other

, plane a plane

(a)

C.

i-plane o plane

(b)
Fio. 7-17. Vortices in plane of tail panels. (a) Case 1, s& < s; (b) case 2, 8, > S.

in pairs. This result, of course, also follows from the fact that ov is zero
if sv < s as given by Eq. (7-15). We need now be concerned only with
case 2.

For the tail panel in case 2 the velocity components have the following
properties-for the vortex in the z = 0 plane:

Ua + ---- -Ua- U V+ ---- --

va+ = - vi- tv + = - Vv- (7A-2)
Wa+ =_ W - WV+ = Wv- = 0

The pressure coefficient on the impact surface P++v for the combined
effects of angle of attack and vortices is

P+v = -2(u,+ + uv+- - + v1 +)2 - (7A-3)

and for the suction surface

Pa+= -2(-u,+ - uv+ - a2) - - VV+) - - (_a) 2  (7A-4)

. -[= -y_ .. . . . . . .. . . . . . .
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The loading coefficient is therefore

AP = P,++v - P;+v 4u.+ - 4 uv+  (7A-5)

It follows that the panel loadings due to angle of attack and due to the
vortices are additive and do not involve the squared terms in Bernoulli's
equation.

On the body the velocity components have the following symmetries
and properties:

Ua+  v + = -U V-
Vc+ = - VV+ = -Vv- (7A-6)

W i+ =----WV Wv -

(va+ + iwa+ + iC1) j(vv+ + iWv+)

On the body the pressure on the impact surface P++v for the combined
effects of angle of attack and vortices is

P++V= -2[u + + uv+ + a(w,+ + wv+)]
- (va + V+)2 - (w+ + Wv+) 2 (7A-7)

Similarly
P'+v = -2[ - u ,+ - uv+ + a(w+ + Wv+)]

- (-v+ - VV+) - - (w.+ + Wv+) 2 (7A-8)
The loading is thus

AP = P+v P;+v = -4(u + + Uv+) (7A-9)

Again, for the body, the loadings due to angle of attack and to the vortices
are additive and-do not involve the square terms in Bernoulli's equation.

4 i



CHAPTER 8

AERODYNAMIC CONTROLS

The choice of controls to effect changes in the angles of attack, sideslip,
and bank of a missile is a problem -of great importance to the missile
designer. This choice must take into account a large number of con-
siderations such as the altitude, attitude, and speed of the missile; avail-
able positions and space for controls and control actuators; and type of
guidance system. A wide variety of missile -controls exists, and others
are being invented all the time. A complete discussion of all control
types is thus not possible and probably would not be desirable. How-
ever, we can consider a-few common types that make up a large fraction
of the controls that occur in practice. It is the primary purpose of this
chapter to show how various -theoretical- methods can be-used to predict
the aerodynamic characteristics of some of these common types. The
title of the chapter indicates that we will confine our attention to controls
that depend primarily on the surrounding atmosphere for their opera-
tion, in contradistinction to reaction controls needed for flight outside
the earth's atmosphere.

It is of interest to note in a general way the role that theory plays in
the prediction of control characteristics. The theory to be used- depends
on the type of control, the quantity to be calculated, and the ranges of
angles of attack and- control deflection, as well as the Mach number.
For controls such as all-movable ones, which can produce significant
interference fields on the body, slender-body theory offers a powerful
means of -analysis, particularly when coupled with reverse-flow theorems.
For types of controls where interference effects are not usually important,
such as many trailing-edge controls, the extensive results of supersonic
wing theory are available. Our general attack on problems of control-
characteristic prediction is first to calculate the linear characteristics on
the basis of linear theory. However, the large control deflections called
for in many maneuvering missiles introduce a number of nonlinearities.
The next step in our general attack -is to consider the modification of the
linear characteristics in the light of -the nonlinearities. Some of the non-
linearities can be calculated, but for others-all we can -hope to do is to
determine their qualitative effects.

Our first consideration will be to classify the- types of missile controls
(not completely), and- then -to specify certain conventions regarding con-

208
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trol deflections, control effectiveness, etc. We then discuss the charac-
teristics of all-movable controls for planar and cruciform configurations
in Secs. 8-2 and 8-3, respectively, illustrating therein several methods
based on slender-body theory. In Sec. 8-4 various types of couplings are
considered that can occur between control functions, such as roll induced
by pitch control. The general subject of trailing-edge controls is dis-
cussed in Sec. 8-5. Trailing-edge controls cover such a wide range, for
which such extensive results are available, that the treatment of the sec-
tion is to classify the results in a general way, and to refer to original
sources for full details.

The results through Sec. 8-5 are based on linear theory; therefore, in
Sec. 8-6, we consider a number of important nonlinearities. One par-
ticular control characteristic which can be handled only to a limited
degree by theory is hinge moment. Some discussion of this general
problem is contained in Sec. 8-7. An important constant of a missile is
the time it takes to respond to a sudden change in-control setting. A
simplified analysis of the missile response to a step input in pitch control
is presented in See. 8-8. On the basis of this analysis, the effect of alti-
tude on missile response is indicated.

8-1. Types of Controls; Conventions

Many types of controls are available to the missile designer. The
following list is by no means exhaustive and includes many types with
which we will not be directly concerned. (See Fig. 8-1.)

All-movable panels Nose-controls
All-movable tip controls Shock-interference controls
Trailing-edge controls Jet controls
Canard controls Air-jet spoilers

No unanimity of opinion prevails with regard to the definitions of
control types; in fact, the technical literature contains many inconsist-
encies. Furthermore, the control types are not mutually exclusive.
One of the principal controls with- which we will be -concerned is the- all-
movable panel or all-movable control. By this we mean an entire wing or
tail panel free to rotate about a lateral axis (which may be swept). By
an -all-movable tip control is meant an outboard section of a wing or tail
panel free to rotate about a lateral -axis. A trailing-edge control is a rear-
ward section of a wing or tail panel free to rotate about a lateral axis,
with the control trailing edge forming all or part of the panel trailing edge.
It is clear from the foregoing definitions that a control could be an all-
movable tip control and a trailing-edge control at the same time.

A possible basis of control classification is the control location with
reference to the missile center of gravity. If the controls are located well
behind the-center of gravity, as for conventional aircraft, then the term

I
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tail control applies. If, however, the controls are placed forward of the
center of gravity, the term canard control applies. When the control is
mounted on the main lifting surface near the center of gravity, the term
wing cuntrol applies.

A number of control types with which we are not particularly con-
cerned are, nevertheless, of interest. A nose control is one mounted on
the nose of the missile and may comprise all or part of the nose. A
shock interference control is a type designed for using interference pressure
fields to produce control. It is so located that it throws a pressure field

(a)l (b)

(c) (d)
FIG. 8-1. Common types of missile controls. (a) All-movable; (b) all-movable tip;
(c) trailing edge; (d) canard.

onto some adjacent surface. A type of control particularly useful- at
extreme altitudes is the jet control. Actually, this type includes the
reaction jet, which depends on the reaction of the jet for its effectiveness,
and the jet vane, which depends on deflecting a propulsive jet for its effec-
tivexiess. Another interesting type of control is the air-jet spoiler.
With this, jets of air are ejected more or less normal to a surface to cause
changes in the external air flow which augment the reaction of the jets.

It is desirable for the purposes of this book tostandardize notation and
sign convention for control deflection angles and control effectiveness.
Let us consider a horizontal reference plane, which is the horizontal plane
through the missile axis for zero bank angle, and corresponds to the hori-
zontal plane of symmetry when one exists. The vertical reference plane
is a plane through the missile axis normal to the horizontal reference
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plane, and corresponds to the vertical plane of symmetry. Now, with
reference to Fig. 8-2, let the control deflection angles for the right and
left horizontal controls looking forward be 51 and 52, respectively. These
angles are measured between the horizontal reference plane and the chord
plane of the controls (assuming no camber) in a plane parallel to the
vertical reference plane. Trailing edge down is taken to be positive so
that negative pitching moment is produced for tail control. Let the con-
trol angles for the upper and lower vertical controls be 83 and 84, respec-

tively. The angles are measured between the vertical reference plane
and the chord plane of the controls in a plane parallel to the horizontal

3

53

72+ 81
2 T8

Fia. 8-2. Positive deflection angles. Top left, side view; center left, top view; bottom,
end view.

reference plane. Positive values of 83 and 84 correspond to a movement
of the trailing edges of the controls to the right so that a positive yawing
moment is produced for tail control. These conventions with regard to
control deflection angle hold equally for all-movable controls, all-movable
tip controls, and trailing-edge controls.

Let us specify precisely what we mean by pitch control, yaw control,
and roll control. Let the control deflections 81 and 52, not necessarily
equal, of the horizontal panels be resolved into pitch deflection 8, and
roll deflection 8. defined as follows:

81 + 625° 2 (8-1)

2
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If the deflections of the controls are equal in magnitude and sign so that

6= 51 52

we have pitch control as shown in Fig. 8-3. If, on the other hand, the
deflections are of equal magnitude but

4opposite sign so that

,)we have roll control with the horizontal
controls. Now let the control deflections
53 and 54 of the vertical controls be de-

composed into yawing deflections ar androlling deflections 5a, as follows:

51-6,,. S. -3 + 84/1 ~ 2
,, 3-_4 (8-2)

2V If the deflections of the vertical controls
are of equal magnitude and sign so that

(b)
Fzo. 8-3. (a) Pitch control and
(b) roll corolol with horizontal we have yaw control as shown in Fig. 8-4.
controls. But, if the deflections are of equal mag-

nitude but opposite sign so that
bat,= 3= -54

we have roll control with the vertical controls.
Let us now consider what we mean by the pitching and rolling effec-

tiveness of the horizontal controls. The pitching effectiveness is measured
by the rate of change of pitching-moment coefficient C. with pitch
control.

Pitching effectiveness - ... (8-3)

The rolling effectiveness of the horizontal controls is measured similarly on

the basis of rolling-moment coefficient C1.

Rolling effectiveness = -'- (84)

The parameter Cm/06, is normally negative with tail control and positive
with canard control. The parameter C/08 is usually negative. A
change in sign of the control effectiveness is known as control reversal.

Consider now the yawing and rolling effectiveness of the vertical
panels. The yawing effectiveness is measured by the rate of change of
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yawing moment with yaw control.

Yawing effectiveness (8-5)

The rolling effectiveness is measured in the same manner for the hori-
"o tal controls. c ,

Rolling effectiveness -0a (8-6)

The sign of the yawing effectiveness is usually opposite to that of the
pitching effectiveness. The sign of the rolling effectiveness for both
horizontal and vertical panels should be negative. The use of canard

(a)

(b)
FIG. 8-4. (a) Yaw control and (b) roll control with vertical controls.

controls for roll control tends to give a positive value of OCil/0a because
of interference effects of the main lifting surface. It is clear that effec-
tiveness derivatives can be defined on the basis of forces as well as
moments, but we will not be concerned with such derivatives. When
there is a coupling or "cross talk" between two controls, then certain
cross-coupling derivatives can be defined. While we will not make precise
definitions of cross-coupling derivatives, we will consider their qualitative
behavior in some detail.

8-2. All-movable Controls for Planar Configurations

The all-movable control used in canard, wing, or tail control applica-
tions is an important type of missile control. One reason for -its impor-
tance is the simple method it provides for obtaining a control of large area
for fast response at high altitudes. In the ensuing analysis of the proper-
ties of the all-movable control, we will approach the problem of the
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pitching effectiveness by constructing the crossflow potential and apply-
ing slender-body theory to obtain detailed loadings. This approach
demonstrates certain tricks in constructing the potential. The approach
to the problem of rolling effectiveness will be along the lines of reverse-
flow theorems and slender-body theory, to show the great simplification
occurring in the analysis when only gross quantities are determined in
contrast to detailed loadings.

Let us calculate the pitching effectiveness of all-movable controls
mounted on a body to produce a planar configuration as shown in Fig.

-

_'y
+

lrplane

o, plane

Iy

S
M

-OI
a-0 X

FiG. 8-5. Crossflow plane and transformed plane for pitch control of planar con-

figuration.

8-5. Although this calculation will be made on the basis of slender-body
theory, it will be extended to nonslender configurations using the same
general methods of wing-body interference described in Chap. 5. Let us
focus attention on the crossflow plane, the 3 plane, and construct the
potential for the flow. Since the control panels are deflected to angles
6,, and the body is at zero angle of attack, the boundary conditions are

- 8,Vo -s5y a and a ys forz=O

ST 0 r =a (8-7)
or

The potential must be continuous throughout the flow field except for
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possible singular points on the boundary where 0, or 0, may be singular.
If a solution could be found producing a local velocity normal to the panel,
and zero velocity normal to the panel and body everywhere else, the solu-
tion could be used to construct the potential for any arbitrary variation
of normal velocity across the span of the control. ' he usual doublet
does not satisfy these -conditions, but-a doubletlike solution having such
properties can be constructed. Let us first transform the cross section of
the missile in the a plane into the unit circle by an application of Eq.
(7-13) a, shown in Fig. 8-5. Now introduce a source and sink on the
surface of the unit circle into which the panel is-transformed as shown in
the figure. The family of circles passing through the source and sink
form the streamlines of their combined flow. In particular, the unit
circle is a streamline so that no flow is induced normal to it. Let us now
transform the flow in the a plane back to the 8 plane. In the transforma-
tion the source and sink are brought into close proximity, forming a
doubletlike solution. In the transformation, the property of no flow
normal to the solid boundaries is preserved, with the exception of the
point where the source and sink come into confluence. At this point the
doubletlike solution, henceforth called a doublet, produces a velocity
normal to the panel surface and continuous through it. Our next step is
to determine this local normal velocity in terms of the doublet strength.

Let the strength of the source and sink in the a- plane be of magnitude
28.Vo dy, where dy is the element of control span at the doublet location y.
The complex potential in the a plane is then

W-(0 -lo (8-8)

where ei and e- i are points in the a plane where the sink and source are
placed. For a point a eie on the unit circle the complex potential can
be written

Wd = 4'd((0) + i4'd(e)) 6 Vody[logCos 9 - Cos e + j (8-9)r I 1 cos(o+ f) I
Since Id is constant on the unit circle, it is a streamline, as formerly stated.
The potential on the unit circle is

'd(e) beVo dy log cos 3 - cos 0 (8-10)Ir 1 - Cos (0 + 0)

Now in the transformation the source strength has remained unaltered.
Half the fluid due to the source flows upward through the span element of
width dy at velocity w(y) into the sink. Applying the equation of con-
tinuity locally, we thus obtain

w(y) dy = - V dy
or w(y) = - 8.V 0  (8-11)

f
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Now our boundary conditions call for w(y) to be - S.Vo, so that the poten-
tial for a velocity - B0Vo at points y and - y on the control panels is

8'e) =C[ogcos -cos e
ir 1- Cos (0 -

+ cos 3 + cos e dy1 + cos (0 )

Since the panels are at a uniform deflection angle, we can carry out the
integration across the panel span to obtain the potential for the entire
flow as follows:

(0) -5.Vf lo"[ cos 0 - Coser fo Cog (0 + )

Cos#- + Cos
+ log I + Cos (+ )J dy (8-12)

where a 1 (8s--"

2a
and+ a/s = a (8-14)

The integration is tedious, as the final answer for the potential shows.
For the top surface of the wing the potential according to a solution of
Gaynor J. Adams is

= -4r, tanh- 1 (8 Si
2

+ 4y, tanh - 1 [ri (s 2 - j]

+ 2\r(312 - y, 2)7i + cos 81)
a 2

wherein sa = +-
8

a 2
ya = y + - (8-16)

Y
ri = 2a

Equation (8-15) is also given by Dugan and Hikido.2

Having determined the potential, we can obtain the forces and loadings
on the panels due to deflecting the panels. It is convenient first to con-
sider the lifts on the panels and the body, before considering the loading
distributions. To specify these lifts, we introduce two new lift ratios
kw and kB analogous to the two lift ratios Kw -and KB defined in Chap. 5.
If LW(B) is the lift on the panels due to its own deflection and LW is the
lift on the wing alone formed by joining the two panels together (an' 6.),
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then the ratio kw is defined as

Lw(B10= w O= aW= a (8-.17)

The subscript W applies equally to all-movable canard or tail panels as
to wing panels. An analogous ratio 4o is defined for the lift LB(W) carried
over onto the body as a result of the panel deflection:

LB(W)
Lw aB = 0 arw (8-18)

To evaluate-kw we must find the loading on the panel. The loading is
given by Eq. (8-30). This loading is integrated across one panel and
doubled to obtain Lw(B). With reference to Fig. 8-5, the lift is given by

sm--a

LW 0 - 2 tn t J dy (8-19)

q05, dx \5, )W(B)

With the aid of the value for

Lw = 2qo,er(sm - a)2  (8-20)

the value of kw obtained by integrating Eq. (8-19) is

11r1 (, + 1 ]ISin'7r/V2w 4 X X- (X - 1) sn X2 +" 1'-

27r(x + 1) (x 2 + 1)2 2 -
X(X -1 ) + X2(X - 1)2(sin-' X, +1)

4 X +" I sn'X 2 - 1i 8 l .o " X I/X 1- 1 si " + 1 + (- 1 )2 1g 2

X =sm (8-21)
a

If the loading is integrated over the body and the lift ratio kB is formed,
there is obtained

n = (i - X) 2 [ ) +L-2-+X 22

X2 - 1i
sin-' 1 + X2 kJ - kw (8-22)

As a matter of interest, this equation coupled with Eq. (5-17) yields a
simple relationship among three important lift ratios:

Kw = k + kB (8-23)

Let us examine these lift ratios to obtain an over-all idea of the gross lift

Nforces due to panel deflection. The values of 1.w and kB are shown as a
function of a/sm in Fig. 8-6. It is of interest to note that kw is not much



218 MISSILE AERODYNAMICS

less than unity for all values of a/s. What this means is that all-
movable panels in the presence of a body for all practical purposes develop

almost as much lift as the wing
1.0 - - - -- formed by joining them together.

(Some discussion of the effect of
0.8 /gaps at the body-control junctures

.7will subsequently be given.) The
.o.6- --- - - lift ratio kB for the body shows an
0 almost linear variation with a/s.

0.4 - /In fact, a simple rule of thumb is
/%B that the fractional part of the panel

-.2 lift carried over onto the body is
equal to a/s. for all-movable con-
trols. The values of kw and kB are0 0.2 0.4 0.6 0.8 1.0 listed in Table 8-1 for general use.

a m It is again noted in passing that these
Fo. 8-6. Lift ratios for symmetrical
deflection of all-movable panels on cir- values can be applied to nonslender
cular cylindrical body. configurations on the same basis as

Kw and KD.
The lift coefficient for the complete configuration due to control deflec-

tion (Lc)a can be expressed simply in terms of kw and kB for tail control.

(Lc)a = Lw(B) + LB(w) = qo8,Sw(CL,)w(kw + k) (8-24)

However, for wing control or canard control there will usually be wing or
tail surfaces in the wake of the control. In such cases a loss of lift effec-
tiveness will occur that can be calculated using the wing-tail interference
methods of Chap. 7. Let us now consider the pitching effectiveness.

TAIm 8-1. NONDIMENSIONAL RATIOS FOR SYMMETRICAL DEFLECTION
OF ALL-MOVABLE WINGS MOUNTED ON CIRCULAR BODY

a Kk KB lx)

si Kw- K C -()

0 1.000 1.000 0 0 0 0.667
0.1 1.077 0.963 0.114 0.118 0.123 0.669
0.2 1.162 0.944 0,218 0.231 0.239 0.668
0.3 1.253 0.936 0.317 0,338 0.349 0.666
0.4 1.349 0.935 0.414 0.442 0.454 0.665
0.5 1.450 0.940 0.510 0.542 0.551 0.664
0.6 1.555 0.948 0.607 0.641 0.646 0.663
0.7 1.663 0.958 0.705 0.736 0.737 0.664
0.8 1.774 0.971 0.803 0.827 0.827 0.666
0.9 1.887 0.985 0.902 0.916 0,915 0.667
1.0 2.000 1.000 1.000 1.000 1,000 0.667

* Triangular panel.
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To obtain the pitching effectiveness of an all-movable control (or its
hinge moment) requires a knowledge of the center of pressure of the lift
due to the panel deflection as well as a knowledge of the lift itself. We
are free to calculate the center of pressure by integration of the loading
distribution given by Eqs. (8-30) and (8-31). Unfortunately, such an
integration will yield different results for each planform of the panel.
The panel center of pressure has been calculated for a triangular panel,
but only the final results are reproduced herein. The center-of-pressure
position of the control panel is given in fractional parts of the chord at the
panel-body juncture cr measured behind the leading edge of the juncture.
These values of (t/c,)w(B) are listed in Table 8-1. The interesting fact is
noted from these results that, because of panel-body interference, the
center of pressure of the panel in the presence of the body has not been
changed by more than 0.005c, from its wing-alone value of 0.667c,. On
the basis of this result, we might surmise that the wing-alone center of
pressure is a good approximation to the center of pressure of the panel in
the presence of the body. This is so, and we shall assume below that

= (~X(8-25)
(It should be remembered here that the wing alone as used here refers. to
the wing formed by joining the two all-movable panels together.) Fir
the reasons discussed in, Sec. 5-6, the center of pressure of the lift on the
body due to the control panels cannot be accurately calculated using
slender-body theory. Actually, the center of pressure of the body lift
resulting from the panel is not sensitive to the precise shape of the span-
load distribution of the panel, and will be nearly the same whether the
lift is developed by angle of attack or by panel deflection. It is, however,
sensitive to afterbody length and Mach number. On the basis of these
facts we may write approximately

( ~)(W), (~r)~w~a(8-26)

The pitching effectiveness for tail control can now be written

_ C. kw[(:t/c,)w - (X/Cr)cgl + kB[(kt/Cr)B(W). - (X/C,)cJ

(CLa')w

(8-27)

where 1, is the reference length for pitching moment, and (X/Cr~g gives the
position of the missile center of gravity. For canard or wing control it is
necessary to consider also the increment in pitching moment due to inter-
ference associated with the control wake.

We have purposely avoided any discussion of the loading distribution
due to panel deflection until now, to avoid breaking up the foregoing dis-
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cussions of the lift and pitching effectivenesses. However, we now apply
Bernoulli's equation including quadratic terms to the calculation of the
loading coefficients. Let u+, v+, and w+ be the perturbation velocities on
the lower surface of the control panels due to deflection a., and let U-, v-,

7

00

z
a

FIG. 8-7. Loading coefficient at trailing edge of various configurations employing tri-
angular panels.

and w- be the corresponding values for the upper surface. Then, neglect-
ing coupling effects due to any other perturbation velocities (which we
shall discuss later), we have

Ap _ +2(u- - u+) + (v-)2 - (v+)2 + (W-) 2 - (w+) 2  (8-28)
qo Vo V02

The symmetry properties of the velocity components yield the loading
coefficient

AP = 4 (8-29)
V

From the potential for the panel, Eq. (8-15), the panel loading coefficient
is found to be
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(AP)W(B)'_ 2 84 - a4 7r + 2 cos- 1[2a/(s 2 + a/s)1( )vB tan e s8-0

____" [ -3 -s + a 2/8) 2 - (y + a/y)2]1 (8-30)

Similarly for the body loading coefficient, it can be shown that

(AP)B(W)_ 2- a4 r + 2 cos-[2a/(s + a2/s)](A)B( - tan e (831
_______ - tan r [(s -+ a2/s) 2 

- 4y 21-)

It is interesting to compare the loading coefficients at the trailing edge of
the control panel due to unit angle of attack and unit deflection angle.
This is done in Fig. 8-7 for a body with triangular panels. Also included
for comparison is the loading coefficient distribution for the wing alone.
As might be surmised, the loading due to angle of attack is greater than
that due to the wing alone, while that due to panel deflection is less.
Qualitatively the loading distributions are similar, aside from the obvious
fact that the wing alone has no body loading.

y2
h ° "

(a) (b)
Fia. 8-8. Direct and reverse flows for calculating rolling effectiveness of planar con-
figurations. (a) Case 1; (b) case 2.

In the treatment of the pitching effectiveness of all-movable controls,
we have used a straightforward application of slender-body theory. The
amount of work involved is, however, considerable. To calculate the
rolling effectiveness by the same method would lead to complicated
elliptic integrals as seen in Adams and Dugan.' We shall forego such a
calculation and confine ourselves to reverse-flow methods. We shall
apply reverse-flow methods to the calculation of the rolling effectiveness
of panels with straight trailing edges. The configurations in direct and
reverse flow germane to such a calculation are shown in Fig. 8-8. The
reverse-flow theorem, Eq. (747), gives

ffw Piaw, dSw = Jf8 P~w, dSw (8-32)

where P, and P 2 are the payiel loading coefficients for cases 1 and 2,
respectively. For case 1, the rolling moment L' is

ff = ff Piy dSp, = 2 Jf Py dSw (8-33)

-j,
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We have chosen aw, such that
aw, y (8-34)

so that 
V

- o = tht P2a,, dy = 25. ff P dSw, (8-35)

go P/I o/V

If we denote the span-load distribution for case 2 by (ccz) 2, we obtain for
the rolling moment

S-= 25a J~gY (8-36)

This result can be interpreted as a relationship between the rolling effec-
tiveness of an all-movable wing and the span loading associated with the
damping in roll of a planar wing and body combination in reverse flow.
In examining this reverse-flow case, we note that the maximum span is at
the leading edge, so that in accordance with slender-body theory all the
load is concentrated along the leading edge. The span loading for the
rolling combination from Heaslet and Spreiter3 is

(Mc) 2  + f( Co_ 2as, a2\[ (, ( 2 a4 \]
("'V0  7 r2 s+ a2 (s2 _ y2) 1-- ms

+ 2 ( _ a2)2 cosh-' (y2 + a')(s2 -a 2 )
i-r y (y2 - a2)(s2 + a2)J (8-37)

This result introduced into Eq. (8-36) yields the rolling moment due to
differential deflection ba. If the rolling effectiveness parameter is taken
to be

=1 f"' (c,
then -(COS. =y (8-38)

The result for the rolling effectiveness based on the exposed panel areas
as reference area and the total span of the combination as reference
length is

+ Cos_ 2X I 2 + 
X)co- X 2

2 X 2)33 F1-x (0,k) + 2X-2x + X

3 () 3

8-8g 2X 1 ') + cos_, 2X (8-39)
+1 32+ +~ iv 1 + X2
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wherein
A 4(Sm a)'

Sm JSW (8-40)

sin k (I - V9S=sn (,\2 + 1)34

For the extreme values of (cz) . we have
1

-(CO)S. = 1 = 0
6A =0 (841)

I M)a. = A X = 1

To illustrate the rolling-effectiveness properties of all-movable controls
the values of (C). as determined from Eq. (8-39) are plotted in Fig. 8-9

0.8

o.6

0.4

5a~

0.2 _

0 0.2 0.4 0.6 0.8 1.0

FIG. 8-9. Rolling effectiveness of planar all-movable controls.

against a/sm. It is seen that the same control panels mounted on a body
of large diameter produce nearly four times the rolling effectiveness as
the same panels acting on a very small body. There are two reasons for
this behavior: panel-panel interference and outboard movement of the
lateral center of pressure. Consider the influence of panel-panel interfer-
ence for a/sm = 0. If a vertical reflection plane were placed between the
two panels they would act independently as half of a wing. The rolling
effectiveness due to forces on the two panels under these conditions would
correspond to a value of Y for (CI)a54 A. Removal of the reflection plane
reduces this value to Y. (Testing a semispan model on a reflection plate
would give a rolling effectiveness too great by a factor of 2.) As the
panels are spread apart, the adverse effect of the panel-panel interference
largely disappears. The second effect is the obvious one that the panel
lifts are concentrated at a greater per cent semispan as a/sm increases.
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Several points need mentioning before ending this discussion of rolling
effectiveness. Figure 8-9 as it stands applies directly to tail control. It
also applies to wing control and canard control, with the important
proviso that the interference effects due to the control wake be also con-
sidered. These effects are usually such that the surfaces behind the con-
trols tend to produce roll in opposition to that developed by the controls
themselves. For canard control the reverse roll can be large enough to
produce control reversal. As a result, canard controls are not well-
suited to roll control. It should be noted that, on the basis of slender-
body theory, the derivation of the rolling effectiveness applies equally to
a full-span trailing-edge control as to an all-movable control. This is a
direct consequence of the fact that the loading of the control in reverse
flow is all concentrated at the leading edge. This result applies, of course,
only to very slender configurations. In the use of Fig. 8-9 a correction
should be applied to these values, to account for the fact that slender-body
theory overpredicts force coefficients for nonslender configurations. For
this reason the results of Fig. 8-9 should be scaled down in the ratio of the
lift-curve slopes of the wing alone, as calculated by supersonic wing theory
and slender-body theory. This ratio for triangular wings is

(CLa)LT(c °sj =BA _<4
) -(8-42)

8 BA>4
rBA

wherein E(k) is the complete elliptic integral of the second kind of

modulus

k = [1(8-43)

Illustrative Example

Let us calculate the pitching effectiveness and the rolling effectiveness
of the wing-body-tail combination treated in the illustrative example of
See. 7-5 if the tail panels are used as all-movable controls at M0 = 2.
Let the, center of gravity be a distance 3.95 length units in front of the
leading edge of the tail-body juncture from which all x distances are meas-
ured. Let us first calculate the pitching effectiveness using Eq. (8-27).
Since

(a\ 0.5625 0.31
fM 1.812

Table 8-1 yields

/2.= 0.936 kB = 0.327

The subscript T is used instead of W in this example since we are con-
sidering tail control, not wing control. The tail center of pressure is, for
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all practical purposes, at the two-thirds root chord at the juncture so that

The center of pressure of body lift can, on the basis of Eq. (8-26), be taken
from Table 5-1. This slender-body value will be sufficiently accurate
since there is no afterbody

= 0.56
B(T)a

If we take the reference length 1, to be the mean aerodynamic chord of
the wing panels and take (CL.)T from the former illustrative example,
Eq. (8-27) yields

0C. [0.936(0.67 + 3.95/1.25) + 0.327(0.56 + 3.95/1.25)]2.31
06. 1.5/1.25

= 9.24 per radian

For the rolling effectiveness, slender-body theory (Fig. 8-9) yields

(C05-. = -0.34

With AT = 4 and B = 1.732, Eq. (8-42) gives a factor

8 8 0367
=rBA -r(4) (1.732) -

to be applied to the rolling effectiveness. Therefore, we have

(C06. = 4(-0.34)0.367 = -0.50 per radian

8-3. All-movable Controls for Cruciform Configurations

The results for pitching effectiveness of planar configurations can be
applied unchanged to cruciform configurations if we neglect the panel-
panel interference terms that arise because of the square terms in Ber-
noulli's equation. However, we cannot apply the rolling-effectiveness
results for planar configurations directly to cruciforms since the panel-
panel interference in this case is associated with the lin6ar terms of
Bernoulli's equation. In the next section the qualitative effects of
coupling due to the quadratic terms will be discussed, but in this section,
as in the previous one, we neglect such effects. Let us start with a dis-
cussion of pitching effectiveness.

Consider the cruciform configuration with all-movable controls shown
in Fig. 8-10 under angles of pitch and sideslip. If a, is the included angle
in the plane of the body axis and free-stream direction, then the angles of
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attack and sideslip are obtained by the decomposition

a -a 008 (p (8-44)
= a. sin (8

The effectiveness in pitch in the a plane can then be calculated directly
from Eq. (8-27) without any regard for the sideslip velocity. Again a

calculation of the yaw effectiveness can bez

Z' made based on fl without any regard for a.
63 It is interesting to note the resultant forces

52 due to certain combinations of pitch control
and yaw control for cruciform configurations.
Consider the pitch control of a cruciform
configuration at zero bank angle. If both
horizontal panels are deflected to 6, a force F
results in the vertical plane. If now the

a, y configuration is rolled to 450 and all four
4/ panels are deflected to 6, a force (2) F will

be developed in the vertical plane due to the
controls. As a result, the pitch effectiveness
in the vertical plane has been significantly

FiG. 8-10. Combined pitch and increased. Therefore, to obtain the largest
yaw control of cruciform con- force in response to a command for accelera-
figuration. tion in a given plane, a missile must roll to a

bank angle of 45' with respect to the plane, and then deflect all four
panels. Since the missile has such a low inertia in roll compared to that
in pitch, such a maneuver can result in fast pitch control. However, we
should not lose sight of the fact that one of the characteristic features of
a cruciform arrangement is its ability to perform a maneuver in any
plane without banking. Let us now turn to the subject of roll control.

Panel-panel interference produces such sizable modifications to the
rolling effectiveness of cruciform arrangements that the rolling-effective-
ness results for planar configurations are inapplicable. The nature of
this interference is made clear by an examination of the general features
of the flow in the crossflow plane of the panels as shown in Fig. 8-11.
For pitch control of the horizontal panels, the flow symmetry about the
vertical panels is such as to produce no sideforce. However, when
aileron deflections are applied to obtain roll control, the figure shows how
positive pressure is created on one side of the vertical panels and negative
pressure on the other. It is to be noted that the resulting rolling moment
always opposes the rolling moment called for by the control deflection.
Therefore, this panel-panel interference phenomenon is termed reverse
roll. It is possible to calculate the magnitude of the reverse roll by
applying the first method of Sec. 8-2 and superimposing solutions of the
type given by Eq. (8-10). In fact, this is precisely the method used by
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Adams and Dugan' to solve this problem. The actual mathematics
leads to elliptic integrals of a complex nature so that only the final results
will be considered here. The rolling-effectiveness parameters (Q), based
on the area of the two deflected panels as reference area and the total
span 2 sm as reference length are shown in Fig. 8-12 as a function of a/sm.
The contribution of the horizontal panels to direct roll and the contribu-
tion of the vertical panels to reverse roll are both shown. At a value of
zero for a/3m the horizontal panels produce a value - (Q1 /A of 0.28,
while the vertical panels produce a value of -0.15. As a result, a value
of about 0.13 is obtained for a cruciform as compared to a value of Y for
a planar arrangement. However, the use of the vertical panels for roll

+ 4-
+ + +

(a)

! -
+

(b)
FG. 8-11. Induced flow and direction of panel forces due to (a) pitch control and (b)
roll control of horizontal control panels.

control, as well as the horizontal panels, increases the potential rolling
effectiveness of a cruciform configuration compared to that of a planar
one. If the rolling-effectiveness parameters of Figs. 8-9 and 8-12 are
compared, it is clear that, for large values of a/,., the adverse effects of
panel-panel interference in producing reverse roll are small, so that planar
and cruciform arrangements have essentially the same rolling effective-
ness for the horizontal panels.

Again it should be noted that for panels of large aspect ratio the results
of Fig. 8-12, which are based on slender-body theory, should be scaled
down by the factors given by Eq. (8-42). Bleviss 6 has calculated the
rolling effectiveness of all-movable triangular panels in planar and cruci-
form arrangement on the basis of supersonic wing theory for the case of
supersonic leading edges. For arrangements having small bodies and
large panels these results can be used.
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FnG. 8-12. Rolling effectiveness of cruciform all-movable controls.

8-4. Coupling Effects in All-movable Controls

In the preceding sections, the discussion of the control effectiveness of
planar and cruciform missiles equipped with all-movable controls was
based on the linearized Bernoulli equation. Since the quadratic terms of
Bernoulli's equation are significant in slender-body theory, we can, using
this theory, deduce information in addition to that already presented.
Coupling effects fall into the category of such information. An example
of a coupling effect would be the rolling moment developed by a missile
with planar all-movable wings due to sideslip of the missile at a fixed
angle of attack. Such a rolling moment is produced by an interaction or
coupling between angles of attack and sideslip, and is proportional to the
product ap. The coupling effects between a and f in wing-body inter-
ference were discussed in Sec. 5-5. Coupling effects associated with con-
trols are studied, using methods analogous to those of that section. In
this section we will consider the types of coupling that can occur among
the effects of thickness, angle of attack, angle of sideslip, symmetrical
deflection of the horizontal panels, and differential deflection of the hori-
zontal panels. It will be possible to classify completely the types of
coupling that occur, and to derive formulas for evaluating the couplings.

With reference to Fig. 8-13, consider the free-stream velocity Vo
inclined at angle a, to the body axis. Let the component of V0 parallel
to the body axis produce perturbation potential 01. Let the velocity
Voc4 normal to the missile longitudinal axis be resolved into components
Voo: and V0e as shown, and let 0, and op be the perturbation potentials
for unit velocities in the two directions. Furthermore, let 08, and '04. be
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the potentials for unit symmetrical and unit asymmetrical deflections of
the horizontal panels. The total perturbation velocity for unit Vo can
then be written

0 = qt + a. + POPs + 8c.06. + 6.06 (8-45)

In terms of perturbation velocities along the y' and z' axes the pressure
coefficient is

Po 2 Ox + -2j L(0) + koz')i (8-46)

With respect to the body axis system x, y, z the pressure coefficient is given
by

o - P0 = -2 + a, cos - - a. sin )
qo OxaO

-+ 9z (8-47)

It is on the basis of this equation that we evaluate the coupling effects.
To study the coupling effects we will put the velocity components into

Eq. (8-47) and form the local pressure difference across the horizontal and

Ayy

eV0 c 

FIG. 8-13. Cruciform missile under combined pitch and bank.

vertical panels. The symmetry properties of the velocity components
and the panel boundary conditions simplify the resultant loading con-
siderably. Let us designate the velocity components and pressure on the
lower side of the horizoDtal panels by a plus superscript, and the same
quantities on the upper surface by a minus superscript. The panel
boundary conditions and the symmetry properties of the velocity com-
ponents then yield

u1+ = Ur U+ = - UU- w+ -- U us - U U =-Uj

Vt+ = Vr VV+ = -- VV- V + = VV V. = -V1, Vt =- v
W1t+ = - wr Wi+ = wr- wo"+ = Wr- Wa = WT. Wt. =wi

d=. -1 =0 =-1 = 1

(8-48)
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The upper sign of wa refers to the right panel, and the lower sign to the
left panel. The panel section has been assumed symmetrical. For the
lower surfaces of the horizontal punels, the velocity components are

u+ = ut+ + au.+ + flu#+ + 3,Ut + 8aUat

v+ = Vt+,+ avt +J3V#+ + 54vi + 8svai (8-49)

w+ = ldz + - a - 5 T

and, for the upper surfaces of the horizontal panels, the components are

u- = u + - aua+ + luo+ - bxt - 5a6..7

dx) ,Tb

The pressure coefficient for the lower surfaces is

P+ - = 2(u+ + aw+ cos p - cv+ sin p)

qo
- [(V+)2 + (W+)2] (8-51)

with a similar exVression for the upper surfaces. The loading on the
horizontal panels is given by

(P+ - P-)j, = -4au + - 48eu-, - 48aua

lddz +
+ 46. VVt]+ 46a Idx\ tV+

[(dz)+ -'v+ V d7 i -v:] (85
- 4avav + + 4fl(1 - v +)ava+ + 4fl(1 - vo+)vt

+ 40(l - VP+) Satv. (8-52)

An examination of this result reveals that the first three terms are linear
terms representing the direct effects of angle of attack, pitch control, and
roll control. However, the last six terms are coupling terms. Pefore we
explore the nature of these coupling terms, let us find the load' g for the
vertical panels.

For the vertical panels denote the right side as the plus side and the
left side as the minus side. The velocity components possess the follow-
ing properties:

u+ = u- %+ = U - u + = -Ur- U. = Ur. Uat = - uz

Vt+ - -v - V V+ = V- VO+ = vC Va = V. Vt = vi

Idy\+ +

W,+ wr w + wD" w0+ =-w Uwt Ura W44 =-Wgj

(8-53)
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By methods similar to those for the horizontal panels, it can be shown
that the loading on the vertical panels is

(P+ - P-) = -4#up + - 463Uau - 4-w#+wt+ - 48.wews+

- 4aw#+(1 + w + ) - 4a8.(wat )(1 + w.+ )

- 46,w.fw3 + - 4.ew,.awt. (8-54)

The first two terms represent the direct effects of sideslip and of roll con-
trol using the horizontal panels. The 5. term represents, in fact, the
reverse roll of the vertical panels due to the panel-panel interference
illustrated in Fig. 8-11. Again we have six coupling terms. The
couplings for the horizontal and vertical
panels are summarized in the boxes of
Fig. 8-14.0

From the foregoing coupling terms for a
the horizontal and vertical panels, we can ; H
determine the qualitative natu:e of all - V P
the cross-coupling terms. Let us consider - 5. 6.
these under the categories of no control, V I--

pitch control, and roll control. Under - -

the category of no control we have a v l V
coupling and a pair of couplings due to Fra. 8-14. Types of coupling be-
at and Pt. It will be remembered that tween horizontal and vertical con-trol panels.
the subject of a# coupling was treated
both qualitatively and quantitatively for planar and cruciform configu-
rations in See. 5-5. The at coupling for the horizontal panels produces
a force along the axis of z as follows:

Z.t -x -4av.+vt +  (8-55)

Actually, an integration over the panel must be performed to evaluate
Z,. For the right panel va+ is positive, and for the left panel negative.
For the right panel vt+ can be positive or negative, but for the left panel it
has the opposite sign. Thus Z.t is symmetrical about the xz plane. It is
shown as positive for both planar and cruciform configurations in Fig.
8-15, which summarizes, in simple form, the types of forces developed by
the panels as a result of the various couplings. The argument for Yp
coupling is analogous to that for Z,, coupling.

The use of pitch control with the horizontal panels induces t0, and P,,
couplings which are also illustrated in Fig. 8-15. Consider first tS,
coupling for the horizontal panels. The Z force corresponds to a coupling
as follows:

z 5, o: 4,[ - (8-56)

The Zis, force can be positive or negative, but it is symmetrical left to

-1
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right since (dz/dz)+ is the same at corresponding points on each panel and
vt, and vg+ both change signs together. The force is shown as positive in
the figure. There is no t0, coupling for the vertical panels of the cruci-
form configuration. The j35. coupling produces a Z force on the hori-
zontal panels.

z .O 4#l -vp+)5,vt (8-57)

Since v#+ is negative for both panels, whereas va is positive for the right
panel and negative for the left, Zpa,

C-t, 0-t a-3 changes gign from the right to the left

panel and produces a rolling moment.
_P The above discussion is valid for both

planar and cruciform configurations,
but the magnitude of Zpa. will be dif-

(a)

~~-6.

(b)
FIG. 8-15. Qualitative effects of FiG. 8-16. Qualitative effects of coupling
coupling on panel forces for (a) no on panel forces for roll control.
control and (b) pitch control.

ferent for each. The vertical panels-of the cruciform configuration pro-
duce a Y force

Y p5, C 4fiw&w (8-58)
In this relationship account has been taken of the fact that a positive load-
ing produces a negative Y force. Now, as shown in Fig. 8-11, wa is nega-
tive for both vertical panels, whereas wa+ is positive for the upper panel
but negative for the lower, one. The result is that a negative rolling
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moment is developed by the vertical panels. It can thus be said that the
use of pitch control under conditions of sideslip produces a negative roll-
ing moment for both planar and cruciform configurations.

We now consider the coupling effects that can develop when the hori-
zontal panels are used as ailerons. Couplings involving t~a, aao, f# a, and

a can occur. The last coupling can, of course, be considered under
pitch control. The qualitative natures of these coupling terms are
illustrated in Fig. 8-16. The tSa coupling involves a term as follows:

Zia. c 48 +  vvt (8-59)

The upper sign of (dz/dx)+ refers to the right panel, and the lower sign to
the left panel. The symmetry of the velocity products is such that the
force is asymmetrical, producing a rolling moment. For the vertical
panels the tMa coupling term is

Yja. cc 46,,wawt+  (8-60)

The asymmetry of wg+-between the bottom and top panel has the effect of
producing a rollini, moment. The net effect of ta, coupling is thus to
modif- 'ling effectiveness.

Wit, _,garci Lo the PS,, coupling, only the deflected panels of the planar
of cruciform configurations are involved. The coupling term is

Zpao x 4#(1 - v#+)6pst (8-61)

For both panels vp+ is negative and vt is positive, so that upward forces
are developed on both. The net effect of I#a coupling is to produce pitch
control with the application of roll control for planar or cruciform
configurations.

While P5. coupling affects only the horizontal panels, a& coupling
affects-only the vertical panels as follows:

Y.3 c 4a8awt.(1 + w + ) (8-62)

Since wst is negative for both panels while w,+ is positive, the result is a
negative Y force for both panels. The application of roll control thus
results in yaw control for a cruciform configuration through 98. coupling.
The coupling introduced through the simultaneous application of pitch
and roll control produces sideforce on the vertical panels of a cruciform
configuration in a similar fashion as a coupling. The coupling term

. - 46w,,wwt (8-63)

has the same symmetry properties as Ys..
In summary, roll control in planar configurations is influenced through

coupling terms by a modification of the rolling effectiveness and the



234 MISSILE AERODYNAMICS

appearance of pitch control. For cruciform configurations the same
effects occur, but yaw control is also introduced. While the foregoing
results have been derived from a consideration of panel forces alone, they
are qualitatively true when a body is present. For instance, if the panel
forces are symmetrical left to right or top to bottom, the lift carried over
onto the body is such that the body forces possess the same direction and
symmetry as the panel forces. When the panel forces are asymmetrical,
the lift carried over is such that the body develops no resultant force.
No quantitative change in the rolling moment can result from body forces.
It should be noted that we here consider deflection of the horizontal panels
only, and that the use of vertical panels for yaw or roll control introduces
new coupling effects. These can be analyzed in the same manner as
those for the horizontal panels. For panels of large aspect ratio to which
slender-body theory does not apply directly, it is to be anticipated that the
coupling effects may be significantly different from those just discussed.

8-5. Trailing-edge Controls

We have considered at some length the characteristics of all-movable
controls, and now we take up trailing-edge controls: that is, controls free to
rotate about a lateral axis, and forming all or part of the panel trailing
edge. Various types of trailing-edge controls are illustrated in Fig. 8-17.
An examination of these types shows that the all-movable control can be
considered a trailing-edge control under our definition. However, our
concern in this section is primarily for those controls which form only a
fractionalpart of the panel surface. A number of theoretical approaches
have been used to estimate the aerodynamic characteristics of trailing-
edge controls. If the control characteristics are not substantially affected
by wing-body interference, then the extensive results of supersonic wing
theory are available. For those controls where wing-body interference
has an important influence on the aerodynamic characteristics, reverse-
flow theorems, combined with slender-body theory, provide a powerful
theoretical tool, as we have seen for all-movable controls. For controls
of high aspect ratio, simple sweep theory provides a useful theoretical
approach. Because the geometric parameters characterizing trailing-
edge controls are numerous, large numbers of specialized results and
design charts-are to-be found in the literature. It is clearly impractical
to reproduce these results, but-itwill be our objective to classify the types
of results available and to rely on the original- references for- details.

We now consider that class -of trailing-edge controls to which the
extensive results of supersonic wing theory -can be applied. Among the
early papers devoted to supersonic controls are those of Frick7 and
Lagerstrom and Graham." To illustrate how supersonic wing theory
can be applied to controls, let us consider the approach of Frick, whose
work is based on a combination of the line-source solutions of R. T.

:
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Jones,8 and the lift-cancellation technique of Lagerstrom.9  The line
source (See. 2-5) is a solution for linearized supersonic, flow which pro-
duces a change in flow direction across any line along which it is placed.
A line source will produce a wedge, the leading edge of which is coincident
with the line source (which may be swept). A line sink will cause the
diverging flow of a wedge-to converge if placed, for instance, at the ridge
line of a double-wedge wing. The plane containing the line source and
lying in the free-stream direction is a plane of symmetry of the flow.

Inboard Outboard Full span

(a)

Inboard Outboard Full span

(b)

All-movable Tip Tip with balance

(c)
Fia. 8-17. Types of trailing-edge controls. (a) Constant chord; (b) constant taper;
(c) others.

Now the flow produced by deflecting a control is not symmetrical about
the plane of the control. However, to the extent that one surface of the
control does not communicate pressure pulses to the other surface of the
control, we can use the symmetrical line-source and sink solutions of
Jones to represent the flow due to the control. We simply take the solu-
tion for the line source or sink and give -tbe -pressure field a positive or
negative sign, in- accordance with the- deflection of the control and the
side under consideration. For those areas of the control surface affected
by pressure communication between the top and bottom of the control,
the pressure field- so constructed will be incorrect. The -corrections to
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the pressure fields acting on such areas are obtained by the lift-cancella-
tion technique.

To fix ideas, consider the case of a control with a supersonic hinge line
as shown in Fig. 8-18. A line sink placed along the hinge line will pro-
duce a deflection- 8 of the flow crossing the hinge line if the strength of the
sink is suitably chosen. The resultant pressure field will be conical from
point A; that is, the pressure will be uniform along each ray emanating
from A. The pressure remains constant between the hinge line and the
Mach line at a value corresponding to simple sweep theory (See. 2-7).

E (30  ) Mach line

a-0 a- C1=O ac-0
a/ / (60*)

A

(a) (b)
Fio. 8-18. Ty~pical pressure distributions associated with flap-type controls utilizing
(a) supersonic and (b) subsonic hinge lines for Mol = 2.

Behind the Mach line, the pressure starts an asymptotic approach back
to free-stream -pressure. With a subsonic hinge line, a different type of

I pressure distribution prevails, as shown in the figure. The infinite pres-
sure at the hinge line corresponds to 9, pressure which in reality has a large

~but -finite magnitude. It represents an integrable singularity which con-
i tributes a finite amount to the normal force acting on the surface. The
~pressure fields calculated from line sources and sinks apply to the entire
~~surface of controls similar to that pictured in Fig. 8-19a. For this con- ,

trol there is no pressure communication between its upper and lower
surfaces around the wing tip or wing trailing edge, and there is no pressure
field from the control on the opposite wing panel. No corrections by the
lift-cancellation technique are thus required. It should be noted that
part of the pressure field, due to control deflection, is "caught" by the

/ /L

/ /
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wing. It has been assumed that the effects of pressure communication
through control-surface gaps are negligible.

Let us now consider controls affected, at least in part, by pressure com-
munication between upper and lower surfaces. Such a control is the
one with a subsonic hinge line shown in Fig. 8-19b. The pressure field
due to a line sink along the hinge line OC extending indefinitely to the
right will act as indicated in the previous figure. Since the pressure field
due to the line sink has been taken
as positive on one side of the control
and negative on the other, a pressure
difference will act in the area out-
board of the tip. Such a pressure ,
difference cannot be supported with-
out a solid surface. The correspond- (a)
ing lift will alter the pressure field (a)
on the wing and control behind the
Mach line AB. Lagerstrom 9 shows
how to construct the necessary pres-
sure fields to cancel the lift of an
outboard tip sector of the presentkind. hr r rn o

Another case requiring use of the ~N0
lift-cancellation technique is shown .K
in Fig. 8-19c. Here both the hinge A .. ' ".
line and trailing edge are subsonic. C
A line sink is introduced at the hinge
line to deflect the flow downward (b) (c)
through the angle 8, and a line source Fxo. 8-19. Some cases encountered in
is placed along the trailing edge to using the lift-cancellation technique.

(a) No lift cancellation; (b) tip sector;
straighten the flow out in the free- (c) trailing-edge sector.

stream direction. Both the line
source and sink produce lift in the trailing-edge sector. The cancellation
of this lift will influence the pressure distribution behind the line- O'A'.
Cohen"0 has studied- the application of lift cancellation to such sectors.
Multiple reflections AB, BC, CD, etc., make application of the lift-can-
cellation technique to -the tip of the control impractical. Reverse-flow
techniques offer a means of overcoming this difficulty.

Some of the sources of control-surface formulas and design charts based
on supersonic wing theory are now considered. For triangular tip con-
trols, the analytical results of Lagerstrom and Graham" ,1 2 are available.
Various-combinations of supersonic and subsonic leading edges and hinge
lines are considered. Goin 3 has studied a wide class of trailing-edge con-
trols, the characteristics of which depend on control planform and Mach
number independent of wing planform. A sufficient -set -of assumptions

I-J
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for this to be the case is
(1) Supersonic control leading and trailing edges.
(2) Streamwise tips.
(3) The control extending to the wing tip or located sufficiently far

inboard so that the outmost Mach cone of the control does not intersect
the wing tip.

(4) The innermost control Mach cone does not intersect the wing root
chord.
Extensive charts and tables for such controls have been presented by
Goin." The characteristics of trailing-edge controls on triangular wings
have been extensively studied by Tucker.14-1 6

In all the above references, few, if any, analytical results accurate to
the order of linear theory are available for control surfaces with subsonic
trailing edgcs. The difficulty associated with obtaining such solutions is

a-0 -TS,-
VOa-O 1 a-

ax-0 -

(a) (b)
FiG. 8-20. Direct and reverse flows for calculating lift effectiveness of all-movable tip
controls. (a) Case 1; (b) case 2.

.due to the multiple-reflection phenomena shown in Fig. 8-19c. However,
with the use of reverse-flow methods, closed analytical results for gross
control forces and moments can be obtained. Frost 17 has used such
methods to obtain the lift effectiveness of trailing-edge controls mounted
on swept pointed wings and swept tapered wings for both subsonic and
supersonic trailing edges. The methods are also applicable to other
control surfaces and to pitching and rolling effectivenesses.

While supersonic wing theory is a valuable tool for many trailing-edge
controls, it is of limited usefulness when appreciable interference exists
between control and body. For this class of controls the combined use
of slender-body theory and reverse-flow theorems presents a more useful
tool, particularly for a trailing edge of no sweep. Let us consider the
cases shown in Fig. 8-20. The trailing-edge control is supposed to occupy
the trailing edge of the wing between si and s, its precise planform being
otherwise unimportant. With reference to Eq. (7-47) the reverse-flow
theorem for the particular circumstance here is

U O I4~ dSp - ff(A dS (-4Jo 1/ q(8-64)
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where q is the total control-surface area, Sw the wing area, and SD the
body area. Since the lift is concentrated at the leading edge in the
reverse flow, we can write. for the total lift on the missile due to the
control

L o +dS = qo 2dS

= 2q0S f" (ccI )2dy (8-65)

The span loading (ccI)2 for the wing-body combination in reverse flow is
the same as that for a rectangular wing of span s. mounted on a body of
radius a for unit angle of attack. This span loading from Eq. (6-39) is

(ccl)= 2(Ao)t = 4(32y2 - a4)(s -_ ) (8-66)
) Vo smy

We can express the lift due to the control as

LF 8 fsm (Sm 2y 2 - a4)11(.3. 2 - y2) l

06 =s-- y dy (8-67)

The integration yields the desired result.
__ 2[7 2 _ a i Si

LF4 s. [ (i- 2)2 -8 72)"

+ - + sin- l  S,2/8_2 + a4/8. 4

2 ( sm 4) 1 - a/sm4 -2a/ .
+ (1 + al/sm1) (8,2/82)

-i sin (1- a4/sm4)(s 2 /S 2) J (868)

The foregoing result can be used to illustrate how the lift effectiveness
of the control depends on the ratio of the body radius and wing semispan
and on the lateral position of the control on the wing. To illustrate these
interesting effects, let us consider the ratio of the lift due to the control to
the lift of a wing alone formed by joining the two controls together,
assuming that the controls have streamwise edges as shown in Fig. 8-21.
It is interesting to note that the controls can develop several times the
lift of the isolated wing. For a very large body-radius-wing-semispan
ratio, the ratio LF/Lw approaches 2. For this case the control has a lift
Lw acting on it and induces another Lw on the body. This result indi-
cates the importance the body can play in increasing control lift effective-
ness by acting as a "lift catcher." For the condition si = a we have an
all-movable control for which the ratio Lu/Lw is kw plus k. For si > a
we have tip controls. As the value of si/a is increased for a constant
value of a/s, the lift effectiveness increases. This behavior illustrates
the inherent effectiveness of' tip controls. Their good effectiveness is
associated with the large wing area that exists to "catch" the lift devel-
oped by a tip control.
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With regard to inboard trailing-edge flaps, their effectiveness can be
calculated from the results of Fig. 8-21, by considering the control to be
the difference between two outboard controls extending to the wing tip.
Though the rolling effectiveness of trailing-edge controls can be evaluated
by using the slender-body theory and reverse-flow theorems, we will not
carry out the general calculation here. We observe only that the case
si = a for planar configurations is treated in Sec. 8-2. The method can
be applied to partial-span trailing-edge controls.

2.5

0.75

1.5 -'' '

!-0.25 /

0 0:2 0.4 0.6 0.8 1.0
a

Fno. 8-21. Lift effectiveness of all-movable tip controls with unswept trailing edges.

As a final subject in trailing-edge controls, let us consider the simple
effects of sweep on control effectiveness, using two-dimensional theory.
Such an analysis applies to trailing-edge controls of large aspect ratio.
Now, with reference to Fig. 8-22 let the sweep of the control hinge line be
variable, but let the deflection of the control So in the streamwise direction
be constant as the sweep angle varies. Let the subscript 0 refer to the
condition of no sweep, and let the subscript n refer to conditions taken
normal to the control hinge line when swept but supersonic. The simple
sweep theory (See. 2-7) yields the result

L,. q. < / (C .*). (8-69)Z- q =~
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Now the following relationships are valid

q.= qo COS 2 A
o (8-70)

cos A

where A is the sweep angle of the hinge iine. The two-dimensional lift
curve slopes are

4
(CL.)O (Mo2 -

4 (8-71)
(CL.). = (M2- 1)

The result of introducing the foregoing relationships into Eq. (8-69) is

L = L°(M°2  1) (8-72)(M 0
1 - 1/cos 2 A)

Thus, if the control hinge line is swept while a constant control deflection
is maintained in the streamwise direction, the lift effectiveness will

-A

Wing B

Control
- B

60A

BA

60 B
Fro. 8-22. Simple sweep theory for trailing-edge controls.

increase. It is, however, necessary to avoid boundary-layer separation
to realize this effectiveness. Equation (8-72) is singular when the hinge
line is sonic; that is, when Mo cos A is unity. Physically, this corresponds
to a detachment of the shock from the control hinge line. Actually,
because of wing and control thickness, the hinge line must be somewhat
supersonic to avoid shock detachment. The precise limits can be
calculated by the shock-expansion theory given in the Ames supersonic
handbook 0
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8-6. Some Nonlinear Effects in Aerodynamic Control

A number of nonlinear phenomena appear in the characteristics of
aerodynamic controls, and theory is only partially successful in account-
ing for these effects. A knowledge of the nonlinearities is a useful guide
in the judicious use of the theoretical results presented in the preceding
sections of this chapter. Most controls possess gaps at their inboard side
edges, their hinge lines, or elsewhere. Under certain conditions such gaps

can produce nonlinear behavior of the
control. There is a tendency to use
large cortrol deflections for missiles
required to maneuver at high alti-
tudes. This tendency accounts for
the importance of a number of non-
linearities. First, there is a tendency
for the control characteristics to de-
part from linearity if the control is at
a large angle of attack. The effects

g _ are termed higher-order effects of angle
a of attack and control deflection. The

extreme angles also act to produce an
0. interaction between the control bound-

0-. 0 ary layer and the outer flow, which
0.6- Ican cause separation of the flow on the

control. In addition, the use of ex-
. 0.4 .0025 treme control angles of attack natu-

rally brings up the subject of the max-
0.2 - .. imum lift capabilities of controls.

i HLet us sta:t our discussion of non-
0 Q.2 0.4 0.6 0.8 1.o linearities with gap effects. One gap

occurring in all-movable controls is
c othe gap at the wing-body juncture.FMo. 8-23. 1Effect of gaps on span load- Fo sm l an es he fec of u h a

ing of wing-body combination; no For small angles the effect of such a
viscosity, gap is amenable to theoretical treat-

ment on the basis of slender-body
theory. In fact, Dugan and Hikido2 have treated this problem, as has
Mirels"9 also. Although these treatments neglect the effects of viscosity,
which is probably of overriding importance for small gaps, they are,
nevertheless, of considerable interest as standards by which the impor-
tance of viscosity is to be judged. The qualitative effects of a gap at
the wing-body juncture are shown in Fig. 8-23. For the slightest gap,
inviscid fluid theory requires that the span loading in the juncture fall
to zero as shown. As a result, the smallest gap will produce a substan-
tial loss of lift effectiveness on the basis of inviscid fluid theory. How-
ever, it is known that, with such gaps, large losses of lift effectiveness

' I



AERODYNAMIC CONTROLS 243

do not occur in real fluids because of the effects of viscosity. Only when
the gap width is large will the results of inviscid theory be valid.

Yet another type of gap occurs in the use of all-movable controls. For
extreme deflections the forward or aft part of the control may pass above
or below the body in side view, as shown in Fig. 8-24. For such gaps the
results of the previous investigators are clearly not applicable. The posi-
tive pressures existing beneath the control leading edge can produce a
download on the body, and the negative
pressures above the trailing edge can pro-
duce an upload. The net result will be a
large couple. _

The so-called higher-order effects of angles
of attack and deflection or of thickness can
produce departures of the control character-
istics from linear theory at moderate angles.
A general theory of higher-order effects for
wings of low to moderate aspect ratios has
not been developed. However, for controls
of sufficiently large aspect ratio to be con- Fo. 8-24. Gaps associated
sidered two-dimensional, the effects of higher with large deflections of all-movable controls.
order can be calculated by Busemann's
second-order theory and by shock-expansion theory. In fact, Goin,13

I and the Ames staff 10 have considered such anplication of Busemann'stheory. As an example of the use of this theory, let us consider the modi-

fication as the result of section thickness to the lift effectiveness of a
trailing-edge control of symmetrical section such as that shown in Fig.
8-25. The Busemann second-order theory gives for the pressure coeffi-
cients of the upper and lower surfaces

P- = -C 1 1( - 0) + C2(6 - 0)2
P+ (8-73)

where 0 = dz,
dx

2
C, = (M0

2  1) (8-74)

02 = (7 + 1)Mol - 4(Mo2 - 1)2(M2- 1)2

The control lift coefficient based on the flap chord is

f l X f (P+ - P-) dx

= 2C8 - 2C26(tH - h) (8-75)
c - Xii1

Despite the fact that the pressure coefficients are nonlinear in the angle 8,
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ZU

-~ C

FIG. 8-25. Blunt trailing-edge control with symmetrical section.

Eq. (8-73), the lift due to the control is linear in 3. For very large deflec-
tions approaching the shock detachment angle, the lift would depart
from linearity, as a calculation by shock-expansion theory will readily
show. What Eq. (8-75) does show is that the lift developed by the con-
trol is dependent on its thickness distribution.

Illustrative Example

Calculate the lift effectiveness for the following example:

Mo = 1.54 - =0.8 -0.05

Biconvex airfoil section:
C = 2 1.708

(1.542 - 1)Y

a2 - 2.4(1.54)4 - 4(1.542 - 1) = 2.129
2(1.542 - 1)2

The thickness distribution is given by

- L-T(1 x T
0 c c 0

so that (-) - 0.64 = 0.032

Now from Eq. (8-75) the ratio of the lift of the control to the lift with zero
thickness is

cz 1 - 2 (t/c)lr
Ci 1 - (x/c)u

2.129(0.32) 0801
1.708(0.20)-

The moderate thickness of the present control thus causes a loss of lift
effectiveness of 20 per cent at all angles of deflection. Results for bicon-
vex sections with various hinge-line positions have been presented by
Goin, 3 and results for general airfoil sections are presented in the Ames
supersonic handbook. 20
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An important viscous phenomenon occurring with all-movable and
trailing-edge controls is the separation of the flow over the control that
can result from so-called boundary-layer-shock-wave interaction. The
interaction involved is, in reality, one between the boundary layer and
the outer flow. Some fundamental work of Chapman, Kuehn, and
Larson,"' among others, provides quantitative information for estimating
when boundary-layer separation will occur. One of the significant condi-
tions influencing the type of boundary-layer separation is the location of
the transition point relative to the points of separation and reattachment.
For "purely laminar" separation the transition point is downstream of
the reattachment point, and for "purely turbulent" separation the transi-
tion point is upstream of the separation point. An intermediate type of

Mo> I
T

I I I

___ ..... , transition
PO S, separation

P I-T R, reattachment
\)Peak--------

\,sep I

_ _I,2 ___________
FIG. 8-26. Separation of supersonic turbulent boundary layer on trailing-edge control.

separation occurs when the transition point is between the separation and
reattachment points. We will concern ourselves only with the purely
turbulent type shown qualitatively for the control in Fig. 8-26. Separa-
tion has taken place on both surfaces of the control as a result of the
pressure rise occurring downstream of the separation point. The pres-
sure distributions just before separation and some time after are both
sketched in Fig. 8-26. Just before separation the relatively sharp step in
the pressure distribution predicted for a wedge by supersonic shock theory
is manifest. If the control is now deflected to a slightly greater angle,
the sharp step cbanges into a gradual rise across the region of separated
flow. In front of the separation point, the pressure rises to its first
plateau value of (Ap),,k above po, and then rises sharply to its final value
at the reattachment point. Chapman et al. 2' have presented data for the
pressure rise (Ap),,,1P necessary to bring about a condition of incipient
separation, and the corresponding flap deflection angle can readily be
calculated. The pressure rises to bring about incipient separation
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together with the corresponding flap deflection angles are given in Fig.
8-27. In applying these data one should keep in mind that they refer to
a sharp change in slope as for a wedge. If the deflection of the flow is

achieved by means of a fairing with a gradual curvature, high pressure
rises may be obtained before separation.

As a final topic in nonlinearities let us consider the maximum lifting
capabilities of controls, particularly all-movable controls. Some indica-
tion of the maximum lift capabilities of all-movable controls can be

obtained by examining data on the
maximum lift coefficients of wings

20" alone at supersonic speeds as pre-
sented by Gallagher and Mueller."

.A The typical lift and drag curves
1°" - for wings at supersonic spebds are

shown in Fig. 8-28. The super-
sonic wing does not develop a stall

0' ,in the usual subsonic sense but
1 2 3 4NO 1.2-

( CL

~I/LP 0.4- 04-.

4- k o)Icp

l' 'ep.

1 2 MO3 4 0 10* 20o0 300 400 50'

Fio. 8-27. Control deflection and pres- Fxr. 8-28. Maximum lift characteristics of
sure ratio for incipient separation of triangular wing at supersonic speed.
supersonic turbulent boundary layer.

continues to develop lift up to angles of attack of about 40 or 45°.
The falling off of the lift thereafter is not abrupt. Now, if the wing
of Fig. 8-28 were an all-movable control, it would probably develop
its maximum lift at a body angle of attack plus angle of deflection of some-
what less than 40' since body upwash would tend to increase the aero-
dynamic angle of attack above the geometric angle of attack. Also, gap
effects of the type illustrated in Fig. 8-24 may well influence the geometric
angle of attack o the control at which maximum lift is developed when
the lift acting-on the body is considered. One of the interesting findings '1
of Gallagher and Mueller is that the triangular, rectangular, sweptback,
and trapezoidal wings tested by them at Mach numbers between 1.55 and
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2.32 all had maximum lift coefficients in the range 1.05 ± 0.05 at an angle
of attack close to 40' . The wings had aspect ratios ranging upward from
1.37.

8-7. Notes on Estimating Hinge Moments

We have deferred consideration of hinge-moment coefficients to a
separate section because of the special nature of these coefficients. It is
often contended that calculations of hinge moments are not reliable
because of the frequent nonlinear variation of hinge-moment coefficient
with control deflection and angle of attack. Much can, however, be
done to estimate or explain hinge moments. Two characteristics usually
sought are linear dependence of hinge moment on such parameters as
control deflection and angle of attack, and low values of the hinge-
moment coefficient. These two requirements can be mutually contra-
dictory. Consider a hinge line located a large distance from the center of
pressure of a control. The nonlinearities due to movement of the center
of pressure will be masked by the large moment arm, but the hinge-
moment coefficients will be large. Now locate the hinge line through the
center of pressure. The small migrations of the center of pressure will
cause large nonlinearities in the hinge-moment coefficient which now is
small. Thus, for a closely balanced control, it will be difficult to predict
accurately the nonlinear hinge moments of the control, but this difficulty
is alleviated by the small magnitudes of the hinge moments.

Let us consider estimating the hinge moments of an all-movable trian-
gular control. The important quantity to determine in this respect is the
center-of-pressure position of the control panel. Our general approach
is to assume as a first approximation that the center of pressure acts at
the same position as for a lifting surface with the wing-alone planform.
Then we -apply corrections to this position to account for control-body
interference and for control-section effects. The corrections due to con-
trol-body interference-effects associated with changes in a can be assessed
from the values in Table 5-1. This table shows that the shift is a maxi-
mum of about 2 per cent of the root chord. The corrections in center-of-
pressure position due to the interference between control and body
accompanying control deflection are given in Table 8-1, where a maxi-
mum correction of less than about 1 per cent of the root chord is indicated.
The change in the control section center-of-pressure position due to thick-
ness can be readily estimated by the Busemann second-order theory
described in the preceding section. The thickness correction can amount
to 3 or 4 per cent of the root chord, and it is applied to the control by
strip theory. On the basis of these considerations, we then have the
following procedure for estimating the hinge moment. Calculate the
lifts due to angle of attack and control deflection by the methods of Secs.
5-6 and 8-2. Assume that the lift due to angle of attack acts at the
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center of pressure of the wing alone, corrected for thickness effects and
for interference effects by Table 5-1. Assume that the lift due to control
deflection acts at the center of pressure of the wing alone (no thickness),
corrected for thickness effects and for interference effects by Table 8-1.
The hinge moment is then the combined moment due to the lifts for angle
of attack and deflection angle. After discussing the hinge moments of
all-movable rectangular controls, we will consider a calculative example
for a triangular control.

It is clear that the general approach just discussed is applicable in
principle to all-movable controls of many planforms. In practice, the
applicability of the method depends on the availability of the necessary
theoretical data. For rectangular a'-movable controls, slender-body
theory gives the obviously inaccurate result that the lift of the control is
all concentrated at its leading edge. Thus, slender-body theory gives no
basis for estimating the shifts in panel center of pressure due to interfer-
ence. For rectangular panels, results based on linear theory5 are avail-
able for the effect of control deflection on lift and center of pressure.
For low aspect ratios they show as much as 4 per cent shift in center
of pressure as against 2 per cent for triangular controls. Rectan-
gular all-movable controls will thus show larger effects of interference on
center-of-pressure position thaii triangular controls, and we are in a posi-
tion to calculate This shift for control deflection (but not for angle of
attack).

Illustrative Example

As an illustrative example, let us estimate the hinge-moment coefficient
for the all-movable triangular control shown in Fig. 8-29. Assume a
biconvex section 5 per cent thick in the streamwise direction. The
hinge-moment coefficient based on the control area and its mean aero-
dynamic chord d is

Cr I C)_[(
Ch + {c~ ~ ( +(CL~ ) (r (8-76)

All quantities refer to the panel in the presence of the body, the subscript
a denoting quantities associated with body angle of attack, and a quan-
tities associated with control deflection. Let M 0 be 2, a be 0.1 radian,
and 3 be 0.2 radian. The lift coefficients associated with a and 5 are

(Q.) = Kiva(CL.)w
(CL)6 = lcwb(Cua)w

Since the triangular wing formed by the two panels has a supersonic edge,

4(CLa)W = (M0 - 1)i = 2.31
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From Tables 5-1 and 8-1 we have

Kw = 1.21 kw = 0.94

Turning now to the centers of pressure for a and 8, we note that the
wing alone has its center of pressure at the two-thirds root chord for no
thickness. Let us now evaluate the shift in center of pressure due to

M0 -2

V2 1i
h

1

Fio. 8-29. Calculative example for hinge-moment coefficient.

thickness, using the Busemann second-order theory of the previous sec-
tion. On the basis of the Ames supersonic handbook,20 the section lift
and moment coefficients are

Ci = 2c 1a + 1'/1C2(h2 - h,2) (8-77)
(c,),,j = YC,(hi - h.) + YC a(hj + h,) (8-78)

where cm is taken about the midchord, and h, and h. are the distances
shown in Fig. 8-29. The center-of-pressure position for the symmetrical
biconvex section is thus

1 (c.) 2C 2 t

C I 3 0 C, c(8-79)
1 2 /1.467\

05 = 0.042

As a result of thickness, the center of pressure of each streamwise section
of the control has been shifted forward by 0.042 of the local chord on a
strip-theory basis. For the wing alone as a whole the thickness has
moved the center of pressure forward an amount 0.042P. Thus, the
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center-of-pressure position corrected for thickness is

.t 2 0.042-a = 0.667 - 0.028 = 0.639
Cr = -  Cr

Let us now apply the corrections due to control-body interference. For
angle of attack we have from Table 5-1

a
(X,)W(B) = 0.667 a 0

0.648 - = 0.2531n

For control deflection we have from Table 8-1

()W(B) = 0.667 a - 0

= 0.667 a = 0.25
Sm

Applying the shifts given by these results, we have

( = 0.639 - (0.667 - 0.648) = 0.620

--. 0.639 - (0.667 - 0.667) = 0.639

We now have all the quantities necessary to estimate Ch for the hinge line
through the centroid.

CA = /(2.31)[0.1(1.21)(0.667 - 0.620) + 0.2(0.94)(0.667 - 0.639)]
-0.038

8-8. Change in Missile Attitude Due to Impulsive Pitch Control;
Altitude Effects

An important quantity in missile control is the rapidity with which a
missile changes attitude in response to an impulsive application of control
deflection. From the change in attitude the necessary normal force is
derived to change the missile flight path direction. Let us consider a
missile flying along approximately level in equilibium, and let the deflec-
tion of the pitch control be impulsively changed. We will determine the
change in angle of attack of the missile as a function of time due to the
control change on the basis of a simplified analysis. The essential fea-
tures of the simplified analysis are that the missile is assumed to respond
in pitch like a two-degree-of-freedom harmonic oscillator with damping
and an impulsive forcing function. It is physically tenable that the
pitching behavior of the missile can be closely approximated by such a
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system. It is possible for any particular missile to evaluate the stability
derivatives, and to see if these equations can be simplified to an approxi-
mate one-degree-of-freedom second-order equation for the angle of
attack. One of the pertinent assumptions is that the changes in flight
speed are negligible. Since significant changes in flight speed occur only
in a time of the same order of the phughoid period, and since we are con-
cerned with times of the order of the short period (which for a missile is
very much less than the phughoid period), this assumption is almost
always warranted. We also assume that the missile is stiff, and that the
control forces are developed in times small comparable to the short
period. In writing the equation of motion, we consider the missile
inertia, the damping, the spring constant, and the forcing function.

In Appendix A at the end of the chapter the equation of motion govern-
ing the angle of attack is derived:

mKC2,& - \ VZa + M a + M) a - (Ma. - = M(6) (8-80)

In this equation m is the mass of the missile, and K, is- the radius of gyra-
tion about the y axis through the center of gravity. The various deriva-
tives such as M, are simply partial derivatives, i.e., OM/Oq. The term
M(B) represents the moment contributed by the pitch control and is a
function of time. In particular we will take M(b)-equal to zero for t less
than zero, and constant for t greater than zero. Ignore MAZ,,/mVo in
comparison with. M for simplicity, even though the assumption is not
necessary.

It is now our purpose to put Eq. (8-80) into coefficient form, and then
to reduce it to a specialized form in terms of natural frequency and damp-
ing parameter. The -derivatives with respect to w are simply expressed
in terms of CL, and C,, for the complete missile as follows:

Z. = -CL(qOD%) (8-81)
Ma = +Cma(qoSRlr) (8-82)

(Note that the Z force is downward in accordance with the usual practice
in dynamic stability.)

The derivatives C,,, and C,.& are defined in Chap. 10 as follows:

ac., a, c.
, -(q,/2Vo) m (&1,/2V o)

so that for the present case

(M& + MI) = (C., + Cmi) - (8-83)

2Vs

When the foregoing three equations are used, the equation of motion
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becomes

+ (q ) (m + C ) ( qoSRI.2]

- o&1A ( a~s z( oSRIAC -ma-7r) " = C,, mI&K) 5(t) (8-84)

Introducing the natural frequency con and damping parameter - as folh. ,vs,

2 f, fqoS~lr'{o2 - mn (8-85)

[CL/Vo - (Cm, + C,,na)l 2 /2VoKv 2JqoSn/m

A - C (qoSR1/mK,/)J8

and the final missile angle of attack

* = . (8-87)

we can write Eq. (8-84) in the common form for dynamical analysis

L + 2 w,& + CO2a = oe*oj21(t) (8-88)

where H(t), the variation of 5 with time, is a unit step function in the
present case.

The solution of Eq. (8-88) will be given subject to the initial conditions

a(0) = 0 a(0) = 0 (8-89)

The form of the solution depends on whether s' < I or " > 1. For
< 1, less than critical damping, there is obtained

cos [COn( 71 (8-90)

with y = sin-, F

For s" > 1 the solution is

(r2 - 1) sinh [Wi(2 _ l) t + -1' (8-91)

with = cosh - 1 "

Let us examine the missile to see -how it attains its final pitch attitude
for subcritical and supercritical damping. The solutions can conven-
iently be plotted in the-form shown in Fig. 8-30. For no damping, the
missile overshoots its equilibrium value of a* and performs a steady
periodic oscillation of amplitude a* about a mean value of a*. As -the
damping is increased, the missile takes somewhat longer to reach its equi-
librium value, but the overshoot is less. As " becomes greater than
unity, the approach to a* is asymptotic from below with no overshoot.In the foregoing analysis we have considered only the missile angle of

f

-- •- - -- - -- t - -



AERODYNAMIC CONTROLS 253

attack. It is possible to determine the variation of w and 0 with time
from Eqs. (8A-1) and (8A-3).

One of the consequences that can be derived from the solutions of Eqs.
(8-90) and (8-91) is the deterioration of the missile response rate as the
altitude increases. Let us consider the effect of altitude on missile
response rate for unit control deflection for a constant Mach number.
We first observe that the natural frequency of the missile varies as the
square root of the dynamic pressure. Also, t will vary in the same
manner if we neglect the change in Vo with altitude for constant Mach
number; an approximation sufficiently accurate for our present purpose.

2 '

2.0

0 1 2 3 4 5 6

an t, sec
FIG. 8-30. Change in attitude of missile due -to- sudden application of pitch control.

We will now proceed to -calculate the -time to reach a* as a function of
altitude for the following numerical values' at sea -level.

((.)o = 2 cycles per second
'o = 0.6

Subscript 0 refers to sea level, and no subscript indicates any altitude.
We have

o ) --7 2= (8-92)

If T* is -the time for the missile attitude to attain a*, then from Eq. (8-90)
there is obtained

* -/2 + sin-'i"  (8-93)

The following tabulation indicates the effect of altitude on r" for the

values of (w,)o-and to above.

h, ft 7*

0 I 1.000 2.000 0.600 1.37
30,000j 0.545 1.090 0.327 1.85
50,000 0.338 0.676 0.203 2.67

100,000 0.103 0.206 0.052 7.94

I4
L 7
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The reduction of missile response rate at high altitude. an be overcome
in part by the use of big controls and large control deflections.

SYMBOLS

a radius of circular body
AP aspect ratio of two control panels joined together
A2 aspect ratio of horizontal tail panels joined together
B -
c local chord of flap
cl section lift coefficient
C, root chord, chord at juncture of control and body

mean aerodynamic chord of control
(ccz)2 span loading of rolling body with control panel at zero

deflection in reverse flow
C1, C2  constants in Busemann second-order theory, Eq.

(8-74)
Ch hinge-moment coefficient, (hinge moment/qSRlr)
C, rolling-moment coefficient, (rolling moment/qoSRl,.)
CL lift coefficient, (lift/qoSR)
Cr. lift-curve slope
(CL) , (CL)6 lift coefficients associated with anglo of attack and

control deflection, respectively
(CLa)n, (CL")o two-dimensional lift-curve slopes based on normal

Mach number and free-stream Mach number,
respectively

C. pitching-moment coefficient,

pitching moment
qoSRl,

0Cm
a(q1,/2Vo)

0Cm
a(&I,/2Vo)

C. yawing-moment coefficient,

yawing moment
qoSRi,

(dz/dz)+ slope of upper surface of control with respect to chord
line

E(0,k) incomplete elliptic integral of second kind of ampli-
tude , and modulus k

F force developed in vertical plane by cruciform missile
with horizontal panels deflected an amount a

F(0,k) incomplete elliptic integral of first kind of amplitude

4,and modulus k



AERODYNAMIC CONTROLS 255

h trailing-edge thickness of control
hi maximum thickness of lower control surface measured

from chord line
h., maximum thickness of upper control surface measured

from chord line
H(t) Heaviside unit step function
k (1 - X4)6; also modulus of elliptic integral
kB lift ratio; ratio of lift on body due to control deflection

to lift of control alone
kT lift ratio; ratio of lift on tail control in presence of

body to lift of control alone
kw lift ratio; ratio of lift on wing control in presence of

body to lift of control alone
body lift interference ratio, Table 5-1

I& w wing panel lift interference ratio, Table 5-1
K, radius of gyration of missile about lateral y axis

through center of gravity
11 reference length
L lift force
Lo lift due to control for two-dimensional flow based on

conditions in streamwise direction
LB(w) lift on body in presence of wing-control panels
Le lift of complete missile
LF total lift of missile duc to control deflection
L. lift due to control for two-dimensional flow based on

conditions normal to hinge line
Lw(B) lift on control panel in presence of body
L' rolling moment about missile longitudinal axis, posi-

tive right wing downward
m mass of missile
M pitching moment
M0 free-stream Mach number
Ml Mach number based on flow normal to hinge line
Mq t9M/Oq
M, OM/Ow

Ma
p rolling velocity about missile longitudinal axis, posi-

tive right wing down; also local static pressure
p0 free-stream static pressure; also pressure at sea level
Ap P - po
P pressure coefficient, Ap/qo
P pressure coefficient of horizontal control panel
AP difference in pressure coefficients

see Fig. 8-26
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(AP).,°.k see Fig. 8-26
q missile angular velocity about y axis
qo free-stream dynamic pressure
qn dynamic pressure based on flow velocity normal to

hinge line
r radial distance from x axis
s local semispan of control
Si Isemispan of inner edge of tip control
sm maximum semispan of control
SB planform area of body
SP planform area of controls
Sp planform area of one panel
SR reference area
Sw planform area of entire wing panels including controls
t local thickness of airfoil section
tH airfoil thickness at hinge line
tm maximum thickness of airfoil section
u, v, w perturbation velocity components along x, y, and

z axes
V0  free-stream velocity
w see u, v, w
Wd complex potential of doublet
XH value of x for hinge axis, Fig. 8-25
x, y, z principal axes of symmetry of missile, Fig. 8-5
x', Iy, z' principal axes of symmetry for a, with = 0, Fig.

8-13
center-of-pressure location

YZ forces along y and z axes
zU z coorainate of upper surface of control
Zoz/ow

y+iz
a angle of attack

angle of attack of body
ac included angle between Vo and missile longitudinal

axis
aw angle of attack of all-movable control

final missile angle of attack after impulsive pitch
control

angle of sideslip
8general symbol for control deflection
50 deflection of control measured in free-stream direction
81,62,83,84 control, deflections of horizontal and vertical all-

movable controls, Fig. 8-2
(81 - 82)/2

8, (8 + 82)/2



AERODYNAMIC CONTROLS 257

Sao (33- 54)/2
(63 + Q4/2

6, deflection of control measured normal to control hinge
line

semiapex angle of triangular wing formed from two
triangular controls

damping parameter, Eq. (8-86)
value- of r at sea level

0 pitch angle of missile (6 = q)
a/sm

A.h sweep angle of hinge line
plane in which missile cross section transforms into

unit circle
r a/,,; also dummy variable for time

time for missile to attain az* with impulsive control
action

Sb velocity potential
1angle of bank
Od velocity potential for doublet

, 4a, €., q, €, velocity potentials associated with a, 0, 6,, ba, and t,
respectively

Vd stream function for doublet
W1, n.atural frequency of missile, Eq. (8-85)
C no natural frequency at sea level

Subscripts:

B body
B(W) body in presence of wing
cg center of gravity
C complete combination
H hinge line
t associated with airfoil thickness
W wing alone or wing panels
W(B) wing panels in presence of body
a associated with angle of attack

associated with angle of sideslip
8 associated with control deflection
+ impact surface

suction surface
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APPENDIX 8A. EQUATIONS OF MOTION FOR MISSILE
WITH PITCH CONTROL

Consider a missile flying straight and level essentially at zero angle of
attack as shown in Fig. 8-31. Apply pitch control to the missile so that it
acquires angular velocity about the lateral axis through its center of

0<<1

Fia. 8-31. Missile undergoing impulsive pitch control.

gravity and develops a velocity w of the center of gravity along the
z axis positive in the downward direction. Let the inclination of the
longitudinal axis to the horizontal be 0. As a result of 0 and of w, the
missile undergoes a change in angle of attack a given by

a 0 + To (8A-1)

and = +- (8A-2)Vo

Assume for simplicity that the lift on the missile depends principally on a
and is independent of 0 and a. Then

(OZ/a)a (8A-3)

where Z is the negative of the lift force, and m is the mass of the missile.
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The relationship between & and.6 is the equation for translation of the
center of gravity in the vertical direction.

+7,.d (8A-4)

Let us now write the equation of motion for rotation about the center of
gravity.

The moment acting on the missile due to the control- action will result
from changes in a, 6, &, and control deflection 8.

M M." + Ma& + M6O + M(b) (8A-5)

The quantity M(5) is the time-dependent moment due to varable control
deflection 8. The term M.a is the moment associated N', t A;4tic stabil-
ity. The moments Ma& and M60 are damping moments aid are due
principally to the tail. These moments are precisely tho, r due to Ma and
M, (q = 0) discussed in See. 10-11. The equation for the roli-tion about
the center of gravity is now

mK2iJ - M = 0
mICY1 - &Ma - 011 - aM, = M(8) (8A-6)

Her - K, is the radius of gyration of the missile about the lateral axis
thvagh the center of gravity. Equations (8A-4) and (8A-6) together
give the motion of the missile. We can readily replace 6 and 6 in Eq.
(8A-6) through the use of Eq. (8A-4) to obtain

/jy~ + K, 2Z", / mi a = M(s)mKu2& + Vo -Ma - M ) & - MAf -M Z ) MmVo

(8A-7)
The term M6Z, will be ignored in comparison with the M, term. Hacd we
ignored the vertical motion of the center of gravity, we would have a
equal to 0, and the Z, terms would disappear from Eq. (8A-7).

A more sophisticated derivation of Eq. (8A-7) is- to be found in Tobak
and Allen"5 considering also changes in forward speed.



CHAPTER 9

DRAG

The supersonic drag of projectiles has occupied the attention of ballis-
ticians for many years and achieved importance even before the airplane.
In recent years the supersonic airplane and missile have brought about
widespread interest in and extensive enlargement of our knowledge of
aerodynamic drag at supersonic speeds. Though great progress has been
made, it can safely be said that succeeding years will see further extensive
additions to our knowledge of aerodynamic drag at high speeds. In this
chapter we will -present some of the important results that have been
obtained, with a particular view to their usefulness to missile engineers
and scientists.

Of the forces and moments acting on a missile, the drag force is
most influenced by the viscosity of the medium in which the missile is
traveling. It is therefore not surprising that 6he drag force is also the
most-difficult to predict or -to -measure accurately. The theoretical tools
used to predict drag must take into account viscosity, and as such they
are quite apart from the methods of potential flow usually used to predict
the other forces and the-moments. It is therefore fitting that we should
devote a special chapter to the study of drag.

In Sec. 9-1 a number of ways are discussed for subdividing the total
drag-of a missile into components. One scheme gives as the-components
of the total drag the pressure drag exclusive of-base drag, the base drag, and
the viscous drag or the skin friction. The chapter is broken down into
these three main sections. In See. 9-2 we consider the analytical proper-
ties of drag curves, and describe the basic aerodynamic parameters speci-
fying the drag curves.

The subject of the pressure drag exclusive of base drag, or pressure
foredrag, is started with a discussion of Ward's drag formula for slender
bodies in See. 9-3. The pressure foredrag of bodies of given shape, not
necessarily slender, is considered in Sec. 9-4, followed in Sec. 9-5 by a
treatment of methods for shaping bodies to achieve least pressure fore-
drag. The pressure foredrag of wings alone is the subject of See. 9-6, and
that of wing-body combinations of given shape is the subject of See. 9-7.
Methods for minimizing the pressure drag of -wing-body combinations-at
zero angle of attack are considered in See. 9-8, particularly area rule
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methods. In See. 9-9 we take up methods for the minimization of the
pressure drag due to lift of wings and wing-body combinations.

The second important component of the missile drag, namely, base drag,
is considered in Sec. 9-10, where the general physical features of flow at a
blunt base are described. The physical basis for the correlation of base-
pressure measurements is laid in Sec. 9-11, preparatory to a presentation
of base-pressure correlations in See. 9-12. A number of variables also
influencing base pressure are discussed in Sec. 9-13.

The third and final component of the missile drag, namely, skin fric-
tion, is described in its general aspects in Sec. 9-14. Engineering methods
for calculating purely laminar skin friction and purely turbulent skin
friction for flat plates are presented in Sees. 9-15 and 9-16, respectively.
The chapter concludes with some comments- on factors influencing skin
friction such as transition and the departure from a lat plate.

0-1. General Nature of Drag Forces; Components of Drag

Of the several significant methods for separating the drag into com-
ponent parts, the simplest is probably that arising naturally from a con-
sideration of whether the drag is caused by forces acting normal to the

V0

FxG. 9-1. Aerodynamic body subject to normal and tangential stresses.

missile surface or forces acting tangential to it. The drag arising from
the pressure forces acting normal to the missile surface is known as
pressure drag, and that arising- from the tangential forces of skin friction
acting on the surface by virtue of viscosity is called viscous drag or skin
friction. With reference to Fig. 9-1, the drag due to pressure p at the
m sile surface is

= p cos (nVo) dSm (9-1)

where cos (n,Vo) is the cosine of the angle between Vo and the outward
normal to the missile surface. The surface Sm comprises the total area
of the missile including the base area. If the base contains a jet, the
surface is taken straight across the jet exit from the missile. The inte-
gral of the pressure over the internal surfaces containing the jet is taken
as the propulsive force.

If r is the local skin friction per unit area due to viscosity, then the

* viscous drag is

D f D cos (t,Vo) dS (9-2)
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where cos (t, V0) is the cosine of the angle between V0 and the tangent to
the missile surface in the r direction. Note that t and r are in the same
direction.

The drag can also be separated into the components of foredrag and
base drag. The foredrag is that part of the total drag acting on the
missile surface exclusive of the base area. It contains significant amounts
of pressure drag and viscous drag. The base drag, on the other hand, is
almost wholly pressure drag. As a consequence the total missile drag can
now be subdivided into pressure foredrag, base drag, and viscous drag. It
is convenient to consider these quantities as distinct quantities which
can be added together to obtain the total missile drag. Though these
quantities are distinct one from another that is not to say that they are
independent of one another. For instance, the condition of the boundary
layer, laminar or turbulent, which specifies the viscous drag also sig-
nificantly influences the base drag.

The first component of missile drag, pressure foredrag, is amenable to
analysis by potential theory in those cases wherein the boundary layer
does not separate and cause large alterations in the pressure distribution.
(Even with boundary-layer separation, potential flow frequently plays a
role in determining the pressure distribution.) The slender-body theory
of drag has been well developed for complete configurations, and linear
theory has been extensively applied to supersonic wings. For bodies
alone, theories of greater accuracy than linear theory are available in the
form of the second-order theory of Van Dyke,15 and the method of charac-
teristics. It is not surprising, in view of the fact that pressure foredrag
is amenable to analysis by the highly developed methods of potential
theory, that much work has been successfully directed toward minimizing
pressure foredrag.

The second component of total missile drag, base drag, is determined
by considerations of potential flow and of viscosity. The so-called dead
water region behind the base of a missile has a static pressure, which
depends on how the outer flow closes in behind the missile, and how the
boundary layer from the base mixes with the dead water and the outer
flow. Although much theoretical work has been done on the problem of
base pressure, its engineering determination is still dependent principally
on correlations of systematic experimental data. The base pressure is
also influenced by any boattailing in front of the missile base, by the
proximity of tail fins to the base, etc.

The final component of total missile drag, the viscous drag or skin fric-
tion, is difficult to predict or measure accurately. This difficulty stems,
in part, from the incomplete understanding of where the boundary layer
turns from laminar to turbulent in flight. Even if the transition point in
flight were known, it would be hard to measure the skin friction in the
wind tunnel for this known transition location, because of unknown
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(Even with boundary-layer separation, potential flow frequently plays a
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alone, theories of greater accuracy than linear theory are available in the
form of the -econd-order theory of Van Dyke, 5 and the method of charac-
teristics. It is not surprising, in view of the fact that pressure foredrag
is amenable to analysis by the highly developed methods of potential
theory, that much work has been successfully directed toward minimizing
pressure foredrag.

The second component of total missile drag, base drag, is determined
by considerations of potential flow and of viscosity. The so-called dead
water region behind the base of a missile has a static pressure, which
depends on how the outer flow closes in behind the missile, and how the
boundary layer from the base mixes with the dead water and the outer
flow. Although much theoretical work has been done on the problem of
base pressure, its engineering determination is still dependent principally
on correlations of systematic experimental data. The base pressure is
also influenced by any boattailing in front of the missile base, by the
proximity of tail fins to the base, etc.

The final component of total missile drag, the viscous drag or skin fric-
tion, is difficult to predict or measure accurately. This difficulty stems,
in part, from the incomplete understanding of where the boundary layer
turns from laminar to turbulent in flight. Even if the transition point in
flight were known, it would be hard to measure the skin friction in the

wind tunnel for this known transition -location, because of unknown
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amounts of wave drag caused by the mechanism for fixing transition.
The tra nsition location depends on Reynolds number, Mach number,
pressure distribution, turbulence level, heat-transfer rate, surface rough-
ness, sound level, and other factors which, to understate the case, are
imperfectly understood. The point of view we adopt is that, given the
transition point, the skin friction can be calculated by methods to b
described.

So far we have considered two distinct schemes for subdividing the
total missile drag and the relationship between the schemes. Yet
another method arises naturally in the application of "control-surface"
methods for evaluating drag as illustrated in Fig. 9-2. The decomposi-
tion results in the components of wave drag and wake drag. The drag
associated with the momentum transfer through the control surface S2,

Shock Expansion/' / i/,

/ / / S

//

// 
W ake S

S2

\.

; \ \ \
Xk\ \\

\ \

\ \

FG. 9-2. Missile at supersonic speeds enclosed by cylindrical control surface.

as S1, S2, and S3 all move infinitely far away from the missile, is called the
wave drag. The drag associated with the net momentum transfer through
surfaces S, and S3 is termed the wake drag. The wake drag in the general
case of a viscous fluid will represent in part the skin-friction drag because
of mixing in the wake between the boundary layer and the iuiiscid flow.
However, in certain theories such as slender-body theory and linear
theory, there is no viscous wake, and the wake drag is due entir.ly to
creation of vortice with kinetic energy. 'For this case of no skin friction
the wake drag is all vortex drag. Thus, on the basis -of inviseid fluid
theory the entire drag is pressure drag composed of wave drag and vortex
drag. This particular decomposition is of great importance when we
come to the problem of minimizing the drag due to lift of wings and wing-
body combinations. Let us now examine the nature of the wave drag
and wake drag more closely.

Figure 9-2 shows waves from the body passing throilgh control surface
S2, which is parallel to the free-stream direction, and carrying momentum

f
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outward through the surface. The momentum transport per unit time
is sometimes called the wave drag, although other definitions of wave
drag will shortly be mentioned. The particular usefulness of this defini-
tion depends on the possibility of evaluating the momentum by some
theoretical means. If the evaluation is made on the basis of slender-body
theory, the control-surface radius must be kept small, since slender-body
theory is valid only in the immediate neighborhood of the body. If the
control-surface radius were permitted to approach infinity in slender-body
theory, the wave drag would become infinite. For this reason the radius
in the derivation of Ward's drag formula (See. 3-9) was kept small
although arbitrary. If the wave drag is evaluated on the basis of linear
theory, the radius .tf the control surface can approach infinity, and the
wave drag will remain finite. From a broader point of view than the
foregoing theoretical one, the wave drag is associated with the energy
necessary continuously to form the wave system of the missile as it moves
at supersonic speeds. In this context the wave drag is really wave-
maling drag similar to that of a ship. From yet another point of view,
wave drag represents the entropy increase of the fluid passing through
the shock waves of the missile. It can be calculated in principle if the
shapes and strengths of all the shock waves are known, by integrating
along all the waves to obtain the total increase in entropy.

The net momentum change per unit time for control areas S, and S3
represents viscous drag of the boundary layer, kinetic energy of vortices
generated by lift, and possibly base drag, although some of this appears
in the wave drag, too. For blunt-base bodies or wings, these three com-
ponents are inextricably combined within the limitations of our present
knowledge of the flow fields behind such bodies or wings. The wake drag
.in such cases -has no particular significance. However, for missiles with
sharp bases and trailing edges, the wake drag is meaningful under certain
circumstances. Assume that for such a missile, symmetrical about a
horizontal plane, the boundary layer remains attached and does not pro-
duce any appreciable alteration in the wave system from that for an
inviscid fluid. At zero angle of attack the total drag then consists-of the
so-called zero wave drag and wake drag which is purely viscous drag.
However, consider the drag due to lift occurring.as a result of an increase
in an'le of attack. This will consist first of additional wave drag due to
an alteration in the strengths and shape of the wave system. It will also
consist of an additional drag in the wake associated with vortices appear-
ing there because of the lift.

9-2. Analytical Properties of Drag.Curves

For the purposes of predicting drag and of analyzing experimental drag
curves, it is desirable to have a standard set of parameters and symbols

4 which define a drag curve. A drag curve, or drag polar as it issometimes



266 MISSILE AERODYNAMICS

called, is a plot of drag coefficient versus lift coefficient. On the basis of
linear theory, the drag curve is a parabola. A parabolic drag curve
together with certain standard symbols appertaining thereto is shown in
Fig. 9-3. The minimum ordinate CD, is called the minimum drag coeffi-
cient and the corresponding lift coefficient CL, is called the lift coefficient
for minimum drag. The tangent to the parabola from the origin (of
which there are two) specifies the optimum lift coefficient CzLt. At the
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Fwo. 9-3. Drag polar and fornns acting on aerodynamic body.

optimum lift coefficient the value of CL/CD is termed the maximum lift-
drag ratio and is frequently written (L/D),.

Experimental drag curves are frequently well approximated by parab-
olas. The drag curve can then be represented by the equation

CD - CDo = k(CL - CLo) 2  (9-3)

The factor k is-cvlled the drag-rise factor, and its value can be obtained
experimentally by plotting CD - CD. versus (CL - CLo)2. If the drog
data plotted in this manner fall on a straight line, the drag curve is
parabolic, and the slope of the line is the drag-rise factor. Although
many experimental drag curves are closely parabolic, the parabolicity
should be tested in each instance. The term drag-rnc factor for k follows
the usage of Vinceiitis and others, It should not be confused with the
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frequently used term drag rise, which refers to the increase in the mini-
mum drag coefficient in the transonic region above its value for incom-
pressible flow (at the same Reynolds number). The drag coefficient
increment above that for minimum drag CD. is written CD, as given by

CD, = CD - CDo (9-4)

and is mathematically equivalent to induced drag at subsonic speeds.
The lift coefficient above that for minimum drag CL. is written ACL as
given by

ACL = CL - CL° (9-5)

The drag-rise factor from Eq. (9-3) then has the form

7= CD,
ACL2  (9-6)

and will be henceforth written in this fashion. For a parabolic drag
curve, the value of CLo,, is found to be

(CL2 + DCD,_ -7)
= Lo + CD,/ACL ) (9-7)

The corresponding maximum lift-drag ratio is(D 2(CL.,t - CLo)(CD,/ACL2

CL. + [CL.2 + CD./(C,"DiACL)P (9-8)
2CD0

It is clear that the drag curve, the optimum lift coefficient, and the maxi-
mum lift-drag ratio are completely determined by CDo, CL., and CD,/ACL2.
For a missile with a horizontal plane of symmetry, the values of C1.0,t and
(L/D)m.. are simply

. = OD. (9-9)

D~r~ L [CD.(CDU1ACL 2)P9-0

Let us examine the quantities which determine the drag-rise factor,
namdly, pressure drag due to lift, leading-edge thrust, and skin friction
variationas due to angle- o^ attack. For this purpose consider the force
actng on the-symmetrical wing shown in Fig. 9-3. First, the chord-force
coeffilcient in the absence of leading-edge thrust and skin friction is
denoted by CA. The leading-edge thrust" is due to suction pressures
arising from the high flow velocities around the leading edge in certain

ic Ses to be discussed later (Sec. 9-6). It is convenient to specify this
thrust as-a-fi ztion A of the drag of a flat plate at angle of attack a and
lift coefficient CL; that is, in coefficient form the leading-edge thrust is
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MCLX. If the average -kin-friction coefficient, based on the same refer-
ence quantities as the other coefficients, is cp, for the upper surface and CF,

for the lower surface, the total chord-force coefficient is

C = CA - JMCLa + CF. + CF, (9-11)

Let the subscript zero stand for zero angle of attack for the symmetric
wing shown here. Then

CC, = CA° + (cF.)O + (CF,)O (9-12)

We will now form the drag-rise factor. The drag coefficient is exactly

CD = CN sin a + Cc cos a (9-13)

We may substitute the lift coefficient for the normal force coefficient, and
the error will be only of the order a3. Thus

CD = CL sin a + Cc cos a + O(al) (9-14)

Forming the drag-rise factor from Eqs. (9-11), (9-12), and (9-14), we
obtain

CD, CD - CD. 1 - +CA - CA,

IXCL 2  CL2  CL. + CL2

+ (CF. + CF) - (C. + C ,)0 (9-15)

CL(

An examination of Eq. (9-15) for the drag-rise factor reveals three terms,
each representing a distinct physical phenomenon. The first term is the
dominant term, and the latter two terms are usually neglected. The
first term is essentially the pressure drag due to lift, which appears partly
in the wave system of the wing, and partly in the vortex wake as described
previously. It is inversely proportional to the lift-curve slope, and
increases directly as the leading-edge thrust decreases. For a wing with
supersonic leading edges, A is theoretically zero; but, for a triangular
wing of very low aspect ratio or a slender body of revolution, U is theo-
retically 0.5. The second term is a change in chord pressure force exclu-
sive of leading-edge thrust. It can arise, for instance, by second-order
pressures proportional to the product of thickness and angle of attack.
Alternatively, it might arise as a result of boundary-layer separation
induced by angle of attack. The third factor represents the change in
skin friction with angle of attack. It can arise from changes in the transi-
tion points on the lower and upper wing surfaces as the angle of attack
changes. It further depends on changes in density and velocity at the
outer edge of the wing boundary layer, changes that can become sig-
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nificant at high Mach numbers corresponding to hypersonic flight. Also,
any difference in temperature between the upper and lower surfaces as a
result of aerodynamic heating, radiation, etc., can enter the third factor
in a manner discussed in Secs. 9-15 and 9-16.

PRESSURE FOREDRAG

9-3. Pressure Foredrag of Slender Bodies of Given Shape;
Drag Due to Lift

The great analytical simplification of aerodynamic problems brought
about by slender-body theory applies to drag problems equally as well as
to those of lift and sideforce. In fact, the drag formula of Ward derived

A: S(1)-O: S'(1)=0

B: S(1)JO; S'(1)=O

X-1
x=0 x=1

FiG. 9-4. Notation for use in drag formula of Ward.

in Sec. 3-9 allows considerable insight into the drag of slender bodies,
including an understanding of the nature of the various components
which go to make up the total pressure foredrag. Accordingly, we will
apply the drag formula of Ward to a series of bodies of increasing coi-
plexity to show how various components of the drag of a slender body
arise. With reference to Fig. 9-4 the complete drag formula of Ward can
be written for a pointed body as

D l /' 1sQ o Zdo - 2 2"(x)S() log- $d d
oj f o x---I

S'(1) 1I ,0 1 d -) lO do,

- PBS(1) + O(t 6 log2 t) (9-16)
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a0=S'(:x)
where ao =

bo = I S'(x) log S"(Q) log (z - ) d(

and @ = ao log r + bo + A. "cosnO+B sinno (9-18)
u-i

The coefficients ao, be, An, and Bn are real functions of x, and t is the
reciprocal of the body fineness ratio. The slender-body potential 0 for

S(1)4o, S'(1#o

yZ

Z r

C 0
X y

X x.1 r- ro

(a)
.z plane

(b) X-1

FG. 9-5. Nonaxisymmetric slender body at zero angle of attack and at angle of attack;
circular base. (a) a = 0; (b) a > 0.

unit free-stream velocity can always be put into the form of Eq. (9-18),
and we will examine specific examples in the following four cases. Of the
several cases of a body of revolution at zero angle of attack, perhaps the
body pointed at both ends is most simple.

Case 1: Body Pointed at Both Ends
For case 1 shown in Fig. 9-4 the body is pointed at both ends. This

condition is sufficient to make S(0) = S'(0) = S(1) = S'(1) = 0. As a
result the entire drag is given by

D 1 S"(x)S") log - dx d (9-19)qo 27r dO X - 1l
This result will subsequently be used to derive the Sear-Haack body of
least wave drag subject to certain conditions. Since the body has a

-II
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sharp base, it will have no wake (in an inviscid fluid), and all the drag will
arise as a result of wave formation by the body. For this reason the drag
represented by Eq. (9-19) is wave drag. It is clearly independent of
Mach number.

Case 2: Body with Cylindrical Base at Zero Angle of Attack

By a body with a cylindrical base we mean one which would have no
discontinuities in streamwise slope if the base were prolonged by a cylin-
drical extension. See Fig. 9-4. For this case we have S'(1) = 0. '

since 0/0O is the velocity component normal to the body ir -

normal to the body axis, this quantity will be zero at the base. r ,
(9-16) therefore reduces to

- -' L S"(x)S"() log 1 T d dx - PBS(1) (9-20)

The drag in this case consists of wave drag, as in case 1, plus a base drag.
The prediction of base drag is beyond the realm of slender-body theory.
The discussion of base drag in the second main part of this chapter shows
it to be Mach-number-dependent. Thus, while the drag of a pointed
body is independent of Mach number, that of a body with a blunt base
varies with Mach number. We will subsequently derive the shape of the
Kdrm~n ogive, which is the body with a cylindrical base possessing the
least pressure foredrag at zero angle of attack on the basis of slender-body
theory.

Case 8: General Body with Circular Base at Zero Angle of Attack

For a general body with a circular base we have that neither S(1) nor
S'(1) is zero. Let the body furthermore possess horizontal 'uid vertical
planes of symmetry. (The restrictions are imposed merely so that we
may obtain a simple analytical answer, and they are easily relaxed by
transforming the base section into a circle.) The streamwise slope of the
body surface at the base dr/dx will not be zero at the body base as in the
previous case, but will vary with angular position around the body as
shown in Fig. 9-5a. It is interesting to see how the slanting sides contrib-
ute to the drag. For this purpose, let us expand dr/dx at the body base in
a Fourier series. By-virtue of the symmetry properties of the base, we
have with reference to Fig. 9-5

dr fo + f2 cos 20 + f4 cos 40 + • • • (9-21)

where fo, f2, etc., are dimensionless. Since (p in Eq. (9-18) is for unit free-
stream velocity, the radial velocity at x = 1 is

O.6 
_ dr _ ao _ nAn cos nO + nB, sin nO (9-22)

Or dx ro Z re +

*n-I
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with the result that

ao = fOro =

A. = 0 n odd

A,, = - Lre+l n ever, (9-23)
n

be(l) = I S'(i) log f log (1 - )S"() d]
B. -- 0

The first two integrals of Eq. (9-16) both contribute to the drag, as well as
the contour integral, which becomes

S do- = a0 log ro + be - 2nro2)
n-1

(a +~ f2. cos 2mG) ro dO (9-24)

The result of evaluating the integral is

0 €  da = 2rao(ao log ro + b0) - 7r 2 (9-25)
.C ap L42n

n-1

The total drag is

Do - f S"(x)S"(0) log dx d
qo F7r JoJ

+ '(1) log (I - )S"(Q) d - I [S'(1)]2 log
7r Jo 2r lg2

ir fr - PBS(i) (9-26)

n-1

Examination of this result is instructive. Let us interpret each term
of the drag physically. For this purpose-assume that (1) the body has' a
tangent-cylindrical base, (2) it has atmospheric base pressure, and (3) it
is axially symmetric, and then relax the assumptions one by one. With
all three assumptions the only term in the drag is the first term, which
represents principally the wave-making drag of the head wave. (Since
the base pressure is atmospheric and the body pressure is also closely
atmospheric at the base, there is no trailing wave within the scope of
inviscid fluid theory.) Relax assumption (1) by letting the body have
boattail. The second and third terms are not now zero. Because of the
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boattail, the flow toward the base has an inward radial velocity. This
flow must be straightened out approximately into the free-stream direc-
tion for atmospheric base pressure by a conical shock wave. The second
and third terms represent the drag associated with this trailing shock
wave or the boattail drag. Let us now relax assumptions (1) and (2).
The flow behind the base will no longer be approximately in the free-
stream direction, but will converge toward a point behind the base. The
location of this point is determined by a complicated mixing process
between the outer potential flow, the discharged boundary-layer air, and
the air in the dead water region. The analysis of this problem is the
subject of that part of the chapter entitled "Base Drag." In any event,
the trailing shock wave is now not dependent on inviscid considerations
alone, but has an intensity determined also by the viscous process behind
the base. The trailing shock-wave system therefore represents fractions
of boattaildrag and base drag. Finally, let us relax the assumption of
axial symmetry so that the drag represented by the summation is not
zero. Actually, this term can be interpreted as a drag due to kinetic
energy of the wake being laid down by the body. The flow leaving the
base has local inward and outward radial velocity due to the cos 2nO terms
for n = 1 or greater, which average out to zero around the body. Never-
theless, the kinetic energy being discharged into the wake by these radial
velocities is not zero on the average and represents a positive drag.

Case 4: Drag Due to Lift of General Body with Circular Base

By a general body with a circular base we mean one which is also
pointed but which otherwise is general within the scope of slender-body
theory. The complex potential for such a body with reference to Fig.
9-5b is

W(j) = aolog (a - a,) + be + an (9-27)
(a- SO 1,n=1

If the coordinate system is changed from y,z to r,O with the new origin,
thr potential will still have the same form since

- =rei (9-28)

Now an inspection of the terms of Eq. (9-16) shows that drag due to lift
must appear either in the contour integral around C or in the base drag
term. Therefore, ignoring-any change in the base pressure, the pressure
foredrag due to lift can be evaluated by that part of the contour integral
about C due to the angle of attack a at the base. (If the angle of attack
at the base is zero, the lift is also zero, independent of the slope of the
body in front of the base) Let the potential at the base crossflow plane
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be comprised of a part for zero angle of attack plus a part due to angle
of attack

4) 4o + 4. (9-29)

The boundary condition for the potential due to angle of attack is

2 1 = - Sin 0 (9-30)

so that 4, is of the form

B sin ar

The constant B, is readily evaluated with the result

, 2 , in 0 (9-31)r

The total drag due to the contour integral is
_ fo (
D =- a 0 ro dO -- - 2r (00 + (P) a (0 + 0.) dO (9-32)

and that part due to angle of attack (or lift) is

-r0 fo Or br a dS= -ro (4o- + 4).-T +4) d

- 7rro
2a 2

Since the lift is
L
_ = 2rro2aqo

we have
S= 2 qo(9-33)

This result, derived in detail here for a body with cylindrical base, was
derived in Sec. 3-10 for a slender body with a base of arbitrary shape.

The interesting fact shown by Eq. (9-33) is that the drag due to lift of a
slender body is just one-half that for a flat plate. Since the drag due to
lift is proportional to the rearward inclination of the resultant force vector
from the normal to the stream direction, the resultant force is inclined
rearward at angle a/2 for a slender body. In this respect of theory, a
body of revolution is equivalent to a very low-aspect-ratio triangular wing
with full leading-edge suction.

Viscous Crossflow

The pressure foredrag for a slender body at zero angle of attack or at
incidence has been calculated on the basis of slender-body theory. Addi-
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tional drag due to lift can be incurred by a slender body or a nonslender
body because of viscous crossflow of the type discussed in See. 4-6. This
drag acts through pressure forces accompanying boundary-layer separa-
tion and vortex formation and is not due to skin-friction forces. Actu-
ally, the pressure forces arising as a result of crossflow are the basis of
the definition of the crossflow drag coefficient cd,, as discussed in Sec. 4-6.
The drag due to viscous crossflow is taken as the force normal to the body
axis due to crossflow times the angle of attack. For a cylinder this rela-
tionship is exact. Thus, if So is the planform area of the body subject to
viscous crossflow and cd. is the crossflow drag coefficient, then the drag due
to viscous crossflow D, is

D, = cdqoc 3S, (9-34)
Viscous crossflow introduces a cubic dependence of the drag on angle

attack. Therefore, the drag curve for a body will not be parabolic above
the angle of attack for the onset of viscous crossflow.

Another factor acts to change the parabolic shape of the drag curve of
a body, namely, changes in transition point with angle of attack. Sup-
pose the transition point is near the body base at zero angle of attack.
Increase in angle of attack will cause the transition point to move forward
and may induce separation and vortex formation. The cbange in skin
friction with angle of attack will depend on how fast the transition point
moves forward, and how vortex formation influences the skin friction in
separated flow. Formally, these influences can be considered as changes
in the drag-rise factor through the third term in Eq. (9-15).

9-4. Pressure Foredrag of Nonslender Missile Hoses at Zero
Angle of Attack

In the previous section the emphasis was on missile bodies of high fine-
ness ratio. For zero angle of attack, missile noses of low fineness ratio
can be handled with relative ease because of the simple nonlinear theories
that have been developed. We will discuss these nonlinear theories in
their general aspects since a detailed consideration of the half dozen or so
methods available would be unduly lengthy.

One of the early studies of the drag of missile noses at supersonic speeds
is that of Taylor and Maccoll,6 who calculated the pressure coefficients of
cones using the full nonlinear potential equation. Extensive tables of
flow around cones are available in an MIT report,4 and convenient charts
for cones are to be found in an Ames report.6 While cone results are of
intrinsic value in themselves, perhaps they have still greater value as a
standard against which the accuracy of many approximate theories for
conical and nonconical noses may be gauged. The pressure field of a
cone depends on two independent parameters: the cone semiapex angle
and the Mach number. It would be useful if the pressure field depended
strongly on some combination of these two parameters as independent
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variables, and weakly on any other independent variable. Such a com-
bination of parameters K, called the hypersonic similarity parameter, has
been advanced by Tsien' for slender pointed bodies in high-speed flow.
The hypersonic similarity parameter is the ratio of the free-stream Mach
number to the body fineness ratio.
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Fia. 9-6. Drag coefficients of cones at supersonic speeds.

The hypersonic similarity law applies to a family of bodies which are
related one to the other by uniform expansion or contraction of the axial
or radial dimensions. The bodies need not be axially symmetric. Cor-
responding points for two such bodies are points which go one into the
other when the bodies are brought into coincidence by expansion- or con-
traction. Let the pressures at two such points be measured by the
following ratio (p - po)/po, involving the local static pressure p and the
free-stream static pressure po. The hypersonic similarity law then states
that the pressure ratios (p - po)/po at corresponding points for two
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bodies of the same family differing in fineness ratio will be equal if the

Mach numbers for the two bodies are so chosen that the similarity param-

eter K remains unchanged. Since we are interested in drag, let us see

what the implication of the hypersonic similarity law is for drag. For a

cone the drag coefficient based on the base area is equal to the usual

pressure coefficient

CD - P pc (' M2 (9-35)
PO qo PO 2)/

As a result the similarity law predicts that the parameter Mo2 CD is a func-

tion only of K as the Mach number and finenes ratio are independently
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Fxo. 9-7. Correlation of drag coefficients of cones at supersonic speeds by hypersonic

similarity parameter.

varied. We have a convenient-set of data for cones to substantiate this
hypothesis.

In Fig. 9-6, the drag coefficients of cones are shown as a function of

Mach number Me and cone semiapex angle 0. These drag coefficients

are correlated on the basis of the hypersonic similarity parameter in Fig,.

9-7. For cone angles up to about 0 = 300, the correlation is good for
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Mach numbers to 8 or 10 except at the lower ends of the individual curves.
As the Mach number approaches the Mach number of shock detachment
from above, the individual curve for values of 0 < 30 turn upward away
from the mean correlation curve. For large cone angles, 0 > 300, the
hypersonic similarity parameter does not correlate the drag coefficients
well. This departure from correlation is associated with approach of the
shock wave to the cone surface ihself. Ehret, Rossow, and Stevens7 have
studied the problem of correlating ogive as well as cone pressure coeffi-
cient- on the basis uf the hypersoric similarity parameter, and have deter-
mined the ranges of Mach number and fineness r-tio over which the vertex
pressure coefficients can be correlated within ±5 per cent. As a rough
rule of thumb, it can be said that the fineness ratio must be 2 or greater,
and the Mach number 1.5 or greater. However, as the fineness ratio
becomes large, the Mach number may approach unity.

For cones the nose wave is straight, and the entropy change across the
wave is uniform along the wave. For an ogive, however, the curvature
of the body behind the apex generates expansion wavelets, which move
along the Mach directions and cause the nose wave to curve backward.
As a result there is an entropy gradient along the nose wave. Account
must be taken of this entropy gradient and wave curvature if accurate
pressure coefficients or drag coefficients are to be obtained at large values
of the hypersonic similarity parameter. Rossow8 has investigated the
influence of the entropy gradient, which gives rise to the so-called rotation
term, on the drag coefficients and pressure coefficients of ogives. For an
ogive with a similarity parameter of 2 he finds a 30 per cent increase in
drag due to the rotation term. Rossow's drag correlation curve for
ogives based on the hypersonic similarity rule is given in Fig. 9-8, where
it is compared with that for cones.

The pressure distribution and drag of a nonslender missile nose can be
calculated accurately by the method of characteristics. This method,
however, suffers from being too time-consuming for general engineering
use. Therefore, a number of shorter methods for accomplishing the same
purpose have been advanced. Let us discuss and compare the shorter
methods listed as follows:

(1) Method of von Krmdn and Moore"°

(2) Newtonian theory
(3) Van Dyke's second-order method 6

(4) Tangent-cone method 1
(5) Tangent-cone method 2
(6) Conical shock-expansion- theory19

The method of von KdrmAn and Moore is one of linearized theory for
bodies of revolution. It is based on a step-by-step numerical determina-
tion of the source distribution along an axis necessary to shape the body.
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The second-order theory of Van Dyke has been developed to the point of
a calculative technique using tables and a calculating form. The tangent-
cone methods are rules of thumb: Method 1 simply states that the pres-
sure coefficient at any point on a body of revolution corresponds to that
of a cone having a semiapex angle Lqual to the angle between the body
axis and the tangent to the body at the point. Method 2 is slightly more
sophisticated than method 1; it assunes that the local Mach number is

2.8 1
2.4 1
2.0 __ _

1.6--
M0D Ogives including rotation

1.2
4Cones

0.8
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FIG. C-8. Correlation curves for drag of cones and tangent ogives on basis of hypersonic
similarity parameter.

given by the tangent cone. This local Mach number is then used,
together with the known loss in stagnation pressure through the shock
wave at the apex, to establish the local static pressure. The conical
shock-expansion theory is a calculative method developed by Eggers and
Savin' 9 for large values of the hypersonic similarity parameter. With
tze exception of Newtonian theory, the foregoing methods apply prin-
cipally to bodies of revolution, although several of the other methods can
formally be applied-to other bodies.

A comparative study of the accuracy of the foregoing methods has been
made by Ehret." The accuracy of the methods was assessed by compar-
ing the predictions of the approximate theories with the accurate calcula-
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tions by the method of characteristics for the pressure drag of cones,
ogives, and a Sears-Haack body with a pointed nose. The general
results of the study are summarized in Fig. 9-9. In the first place it is
seen that the Kdrm~in and Moore theory applies at values of the Simi-
larity parameters below unity, as would be expected for a linearized
theory. The error of Van Dyke's second-order theory also increases as
the similarity parameter increases, but the error is generally only about
one-third that of the linearized theory. In contrast to these two methods,
Newtonian theory, tangent-cone method 1, and conical shock-expansion

30,,angent cone No. 1

20 Tangent S rcone No. 2 -

0

"- 0

Conical shock-
2expansion Newtonian

-4- Von Karman
and Moore

-50 1f .- I
0 0.4 0.8 1.2 1.6 2.0

Similarity parameter, K
FIo. 9-9. Accuracy of various methods for estimating pressure drag of nonslender
missile noses at zero angle of attack.

theory increase in accuracy as the hypersonic similarity parameter
increases. It is interesting to note that tangent-cone method 2, which
appears more sophisticated than method 1, is more accurate only for
similarity parameters less than about 1.2. These results of Ehret serve
as a good guide to the choice of a method for the calculation of.the drag
of a nonslender missile nose in any particular case.

9-5. Shape of Bodies of Revolution for Least Pressure Foredrag at Zero
Angle of Attack

We have concerned ourselves at some length with the direct problem of
finding the pressure foredrag of a missile nose of prescribed shape. Con-
siderations of aerodynamic efficiency require solutions to the indirect
problem of finding the shape of the body for least pressure foredrag for

certain prescribed constraints such as fixed length, fixed volume, fixed
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base area, fixed angle of attack, etc. Bodies of revolution of least pres-
sure foredrag include such bodies as the Kdrmdn ogive, the Sears-Haack
body, Newtonian bodies, etc. It is interesting that problems of least pres-
sure foredrag of bodies of revolution are much older than the airplane
and were, in fact, studied by Newton himself.'" Furthermore, such
problems have long been popular with mathematicians, like Todhunter,
skilled in the calculus of variations. 1

Such bodies of least pressure foredrag as the above-named bodies are
frequently termed bodies of minimum wave drag. An understanding of
this term is predicated on two considerations. First, the use of the
adjective minimum in this connection is not to be confused with the use
of the adjective minimum in reference to CD,, the minimum drag, as
shown in Fig. 9-3. Second, the wave drag is equivalent to the pressure
foredrag, which is in actuality minimized, only under special circum-
stances. These circumstances are that the fluid be inviscid and that the
base pressure be free-stream pressure. This equivalence of pressure fore-
drag and wave drag is discussed in See. 9-3 for s!ender bodies. For these
reasons we shall term so-called bodies of minimum wave drag, such as the
K6rm~n ogive, bodies of least pressure foredrag.

The Sears-Haack body and the Krmdn ogive are bodies of least pressure
foredrag derivable on the basis of slender-body theory. The method we
will use to derive the bodies is one mentioned by von K~rmdn.' It is
based on an analogy between the computation of the induced drag of a
lifting line of arbitrary span loading and the pressure foredrag of a slender
body at zero lift with an arbitrary distribution of area along its length.
Consider 3.ow slender bodies of the types considered in cases 1 and 2 in
Sec. 9-3. -he pressure foredrag of such bodies is given by

o - f f S"(x)S"( ) log Ix - J d dx (9-36)

We are now taking the body to have length I rather than unit length.
Since the bodies have pointed noses, and either pointed or cylindrical
bases,

S'(O) = S(O) = S'(l) = 0 (9-37)

The variables x and are changed to 0 and 4.

X
= (i + cosO) (9-38)

Y (1 +cos 4)

The values of 0 and 4 equal to zero refer to-the base of the missile as shown
in Fig. 9-10, whereas the values of -r correspond to the pointed nose.

-I -- - - - - -- - - -



282 MISSILE AERODYNAMICS

Our first objective is to obtain an expression for the drag integral of
Eq. (9-36) in terms of certain Fourier coefficients which specify the area

distribution of a slender body. By
Sthe aree distribution is meant the

variation of the body cross-sectional
area along the length of its axis.
The area distribution, or rather its

X axial derivative, can be expanded in a
sine series convergent in the intervals
0 <5 0 <i r and 0 :5 :5 <7r

.0

S'(x) = 7rl b. sin nO
(9-39)

x-O x S'(1) = irl bn sin no
0 -7r 8-0 n-1

FiG. 9-10. Notation for use in minimiz-
ing pressure foredrag of slender bodies
at zero angle of attack. drag is denoted g(x)

g(x) =-fo S"() log Ix - fl d = 1 bn cos no (940)

n-1

The drag can now be evaluated.

00 4

D = -2 mb,, sin m) b4 cos nO do

rn-I n-I

= 7 n312 b (9-41)

n=1

Thus, we have a simple result for the pressure foredrag of a slender body
subject to the conditions of Eq. (9-37). Its similarity to the formula for
induced drag at subsonic speeds is apparent.

The next objective is to determine the body cross-sectional area dis-
tribution and the body volume in terms of the values of b,, preparatory to
determining bodies of least pressure foredrag. The area distribution is
obtained from an integration of Eq. (9-39) subject to the conditions of
Eq. (9-37). The resulting area distribution is

(o)=t 7 sin 20 s + b i +1)0

sin (n - 1)0 (94

n 4
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and ,he body volume is

Vol. ---- b - k(9-43)

Bodies of minimum wave drag can now be formed for certain restric-
tions on length, area, and volume by joint consideration of Eqs. (9.41),
(9-42), and (9-43). This is the appr3ach used by Sears 8 in his derivation
of the Sears-Haack body independently derived by Haack. 7  If we desire
to have a body of nonzero volume we must keep either b1 or b2 nonzero.
Let us explore the case of b2 # 0 but all other b. equal to zero. We have
then

16 Vol.
72= 213

16 Vol. sin3 0S(o) = 3__..t_

S(x)= 16 Vol.1 [ 2Xy (94

S(l) 2 b= 0

This boA- is %vmmetrical about the midpoint of its axis, being pointed at
both ends. is the Sears-Haack body, which is the body of least
pressure fc , (drag) for zero base area and'a given length and volume.
Since we h ,. -cified zero base area, we must have b, equal to zero. To
have a body ;ith any volume we must have a nonzero value of b2 given
by Eq. (9-44). The values of b1 and b2 are thus uniquely fixed by the
prescribed conditions. The only other question that now arises is
whether inclusion of any other of the b, terms can reduce the drag.
Equation (9-41) answers this question firmly in the negative. As a
result the Sears-Haack body is the one and only body for least pressure
foredrag under the prescribed conditions. Its drag is simply

D = 128 Vol.2
.qo n 4

and the drag coefficient based on the maximum cross-section area is

CD = 24 Vol. (946)

This simple result-is typical of solutions to problems of least pressure fore-
drag. It indicates the desirability of spreading the volume over as long
an axial distance as possible. The area distribution of the Sears-Haack
body is given in Table 9-1.
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TABLE 9-1. COORDINATES OF BODIES OF LEAST WAVE DRAG

r/a

Sears- I~rmn Three- Newtonian bodiest
X/1 Haaek* ogivet quarter-

power body 1/a = 3 i/a = 5

0 0 0 0 0.0073 0.00165
0.02 0.089 0.069 0.053 0.060 0.055
0.04 0.148 0.116 0.089 0.099 0.091
0.06 0.199 0.156 0.121 0.129 0.123
0.08 0.245 0.194 0.150 0.159 0.153
0.10 0.288 0.228 0.178 0.186 0.181
0.20 0.465 0.377 0.299 0.305 0.300
0.30 0.609 0.502 0.405 0.41A"  0.407
0.40 0.715 1 0.611 0.503 0.505 0.505
0.50 0.806 0.707 0.595 0.599 0.596
0.60 0.877 0.791 0.682 0.685 0.682
0.70 0.932 0.865 0.765 0.767 0.765
0.80 0.970 0.926 0.846 0.847 0.846
0.90 0.992 0.974 0.924 0.925 0.924
1.00 1.000 1.000 1.000 1.000 1.000

* Given volume and length 21; maximum radius a.
t Given base radius a and length 1; tangent-cylindrical base.
t Given base radius a and length 1.

The second body of least pressure foredrag is obtained by letting b, be
nonzero and all other values of b. be zero. The various quantities then
turn out to be

b - 4S(l) 8 Vol.
r j2 7.213 (9-47)

S(O) = S(v) (Tr - 0 + /, sin 20)

This-body is the Kdrmdn ogive, which has the least pressurp foredrag for a
given-length and a cylindrical base of given area. Be. , che base area
and- length are prescribed, the value of b1 is uniquely determined. If b2
were not zero, the drag would be increased by Eq. (9-41) and the volume
changed by Eq. (9-43). Any other nonzero values of b, would increase
the drag without changing the volume. The drag of the body is

D 16 Vol.2 4S 2(/)
qo - 7 4 - r1 2  (9-48)

and the drag coefficient based on the base area is

CD = 8 Vol. 4S(l)C 7r11 - rJ- (9-49)
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A comparison of Eqs. (9-45) and (9-48) reveals that the pressure foredrag
of a Kftrmtn ogive is only one-eighth the pressure foredrag of the Sears-
Haack body of the same volume and length. This large difference
between the two bodies is in part counteracted by the base drag of the
Kdrmgn ogive. The area distribution of the Kdrm~n ogive is given in
Table 9-1.

Illustrative Example

Compare the pressure foredrag of a Kdrmtn ogive of 5 calibers with the
Sears-Haack body of comparable length and volume. If the base-
pressure coefficient of the Ktrmn ogive is -0.2, how do the total
pressure drags compare?

For a Kdrmtn ogive of 5 calibers, the base radius is 1 if the length is 10,
so that S(1) = 7r. By Eq. (9-48) the pressure foredrag is

D 4-2

qo 7r(1 0.126

and the pressure foredrag coefficient based on the base area by Eq. (9-49)
is

47r
CD = '(10)2 = 0.04

The volume from Eq. (9-47) is
Vol. = 5r

2

For a Sears-Haack body of length 10 and volume br, Eq. (9-45) gives
the pressure foredrag as

D 128(57r)2
_O = T(10) 1.005qo 2r(10) 4

The pressure foredrag of the KIrm.n ogive is thus one-eighth that of the
Sears-Haack body, as previously mentioned. Now for a b.sG drag coeffi-
cient of -0.2 the KArmAn ogive has five times as 'much base drag as
pressure foredrag. Therefore, the total pressure drag for the KArmAn
ogive is three-quarters that for the Sears-Haack body.

While bodies of least pressure foredrag are readily derivable on the
basis of slender-body theory, the question arises whether similar bodies
cannot -be derived on the-basis of other theories. Actually, such bodies
can be found on the basis of Newtonian impact theory, which gives the
following simple expression for the local pressure coefficient:

P = 2-sin2 6 (9-50)

Here 8 is the angle between the tangent to the body in the streamwise
direction and the streamwise direction itself. Eggers, Dennis, and

Ii
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Resnikoff' 2 have studied Newtonian bodies of least pressure foredrag, and
the reader is referred to their paper as well as the book of Todhunter n for
the mathematical details. The integrals of drag, volume, and surface
area of bodies of revolution can easily be evaluated in terms of the equa-
tion for the shape of the body. Subject to restraints on base area, length,
volume, or surface area, and subject to certain other mathematical condi-
tions, the drag integral can be minimized by the calculus of variations to
yield the shape for least pressure foredrag. Five bodies are given by
Eggers et al.12 for different combinations of restraints.

Of the various Newtonian shapes the one of particular interest here is
that for prescribed body length and base area, since it is directly com-
parable to the Kdrmin ogive. (We could just as well have specified
length and base area for the ogive.) Actually, the Newtonian body for
given length and base area is flat-nosed. Its shape is given in parametric

1.0
0.8 Karman ogive

0.6
a0.4 J J "Newtonian body (- 3)

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

FiG. 9-11. Comparison of shape of Kirmn ogive with that of Newtonian body of
least pressure foredrag.

form by Eggers et al.,12 and the shape coordinates are given in Table 9-1
for two fineness ratios. The bluntness for a fineness ratio of 5 is 0.16 per
cent of the base diameter, and for a fineness ratio of 3 the bluntness is
0.73 per cent. The bluntness of the nose is judged to have only a small
local aerodynamic effect on pressure drag, as long as the fineness ratio
does not get much below 3. The actual shape of the Newtonian bodies is
approximated closely enough for most purposes by a three-quarter power
body.

a ( n = (9-51)

The shape ordinates for the three-quarter power body are also given in
Table 9-1, where they can be compared with those of the Newtonian
bodies to shov the closeness of fit.

A comparison of the Newtonian body of least pressure drag for a given
length and base area and the Krmin ogive is made in Fig. 9-11. First,
it should be noted that the condition S'(1) = 0 used in deriving the
KIrm~n body was not involved for the Newtonian body. As a result
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the Krmdn ogiv'e is somewhat fuller than the Newtonian body. Never-
theless, the two shapes are not greatly different from each other. This
result tends to suggest that the shape for least pressure foredrag for pre-
scribed conditions may not be sensitive to the actual physical law used to
obtain the pressure coefficient. As a consequence, a shape found to be
optimum on the basis of a particular physical law might be expected to be
nearly optimum under aerodynamic conditions where the physical law is
known to be grossly inadequate.

The question naturally arises whether the pressure foredrag calculated
by Newtonian theory is accurate, assuming that the shape is indeed
optimum. It has been fuund" that Newtonian impact theory generally
gives pressure foredrags which are too low when compared to the experi-
mental foredrags corrected for skin friction. In lieu of accurate absolute
drags, it might be asked whether Newtonian impact theory predicts
accurately the ratio of the drag of a Newtonian body to that of a cone.
This question was investigated by Eggers et al. 12 for bodies of the type
given by Eq. (9-51). For n - 0.75 it was found that the ratio is indeed
accurately predicted. For n - 0.6 the error appears to be about 10 per
cent in the ratio, and increases rapidly as n decreases further. As a rule
of thumb, one would compute the ratio by impact theory and multiply
the ratio by the known pressure foredrag coefficient of a cone to get
accurate pressure foredrag coefficients for Newtonian bodies of prescribed
length and base area. For the low values of n some improvement in pre-
dictia of pressure foredrag coefficient can be achieved by the special
methods of Eggers et al. 12

The final question we consider in the comparison of the Newtonian
body and the K~rmdn ogive is: Which has the lower drag? Jorgensen 3

has used Van Dyke's second-order theory to compute the drag of the
Newtonian body and the Kdrm6n ogive for a fineness ratio of 3 for
Mo = 1.5, 2.0, and 3.0. It might be expected that a particular body
would show lower drag in that region where its theoretical basis is known
to be superior. Actually, the Newtonian shape exhibited generally
lower calculated drags, but the differences appear not to be significant.
Jorgensen also proposes some empirical shapes which have slightly lower
calculated pressure foredrag than either the K~rm.n or Newtonian
shapes.

9-6. Pressure Drag of Wings Alone

An extensive literature has been built up on the subject of the pressure
drag of wings at supersonic speeds, mainly on the basis of supersonic wing
theory. The pressure drag of a wing alone at supersonic speeds can be
considered to be the result of thickness drag and camber drag that occur at
zero lift and of drag due to lift. To obtain an insight into these various
components of the total pressure drag of a wing, it is useful to examine
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the two-dimensional pressure drag of airfoils. For this purpose let us
imagine an airfoil with camber and thickness distribution at zero angle of

Iz  Mean camber line Z

~0 ze Chord j

a-O VO>0

OC-0 ce> 0
FiG. 9-12. Notation used in specifying thickness and camber distributions.

attack as shown in Fig. 9-12. The chord is the line joining the leading
and trailing edges. The thickness distribution is

t(x) = Z" - Z, (9-52)

and the camber distribution is

Z. + zi
= 2 =0 (9-53)

At angle of attack the camber distribution is

2x) U 2 Z (9-54)

For combined effects of angle of attack, camber, and thickness, the
coordinates of the upper and lower airfoil surfaces are given by

t
zU = za + 2 +

~(9-55)

Zz = Ze + 2 -

According to two-dimensional supersonic airfoil theory the pressure coeffi-
cients on the upper surface Pu and the lower surface P are

2(dzu/dx) 2 (dz+ d2 1 d.)
PU =(M0

2 - 1) i (M 0
2 - 1) W\dx dx- 2dx--

-2(dzi/dx) -2 - d, d2 I dt a-6
(11(M02 - ) Mo2 

-_) 1)\dX T
and the increments in drag for the top and bottom surfaces are

dz (9-57)dz.dD =-P.- qo dx (-7
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The total drag per unit chordwise length is

d(D ,+Di) 4qo [dz d2 2 1 (d 12]

dx = (M 0
2 - 1) + [dx x) +4 \+dx)J (9-58)

At zero angle of attack the drag per unit chord is

A(D. + DO 4qo [d2 2 1 /dt\21
dx = (M0

2 - 1)X kd + 1 dx)J (9-59)

Illustrative example

Determine the thickness and camber drags of a double-wedge airfoil of
maximum thickness t. at the mid-
chord if one side is flat. Compare
with the drag of a symmetrical double- tm
wedge airfoil with the same thickness -F
distribution. 

C

With reference to Fig. 9-13 the (a)
values of dt/dx and d /dx for the flat-
side double-wedge airfoil are

dt 2t. -t <x< 2 tm
dxc -

_ C
- 2t.
C 2 < x <_C (b)

d2 1 dt FIG. 9-13. (a) Cambered and (b) un-

dx= 2 d 0 < x < c cambered double-wedge airfoils of
-- -identical thickness distribution.

We can thus write from Eq. (9-59)

D., + A=4 [d2 1 ldt\2
qoc = (M 0

2 - 1) Ld- +[

The components of Cd due to camber and thickness are thus

cdc,= _ 1)4 due to camber

4 (L)2
Cd, - (M2  j 1) due to thickness

Thus, both camber and thickness cause equal increments in drag at zero
angle of attack.

For the symmetrical double-wedge airfoil the thickness distribution is
the same as for the flat-bottom airfoil, so that its thickness drag coefficient
is the same. However, its camber drag is zero. As a result, the use of
camber in this particular instance has doubled the drag at zero angle of
attack of the airfoil.
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The foregoing consideration of the components of the drag of a two-
dimensional supersonic airfoil leads to results that are true also for wings.
First, the introduction of camber leads to additional drag at zero lift or
angle of attack. In fact, any departure from a horizontal plane of sym-
metry produces the same result. However, what is also important is the
"coupling" between the drags due to thickness, camber, and angle of
attack. Let us rewrite Eq. (9-58) as

(D. + D) =(M 0 - 2 [ - 2cr + (22 + I(dt)2 (960)d-Z (MO2 - 1)11 1 2 - x 2a - dx) - " dx] I 9-0

It is noted that the thickness distribution produces a drag of its own, inde-
pendent of the camber and angle of attack. However, the drag associ-
ated with angle of attack and camber are not independent in the sense
that they are superposable like the drag due to thickness. Many wings
of interest in missile aerodynamics are symmetrical, and we will consider
such wings for the time being. Later we will return to camber when we
discuss cambering and twisting of wings to reduce drag due to lift.

For a symmetrical wing at zero lift the drag coefficient depends on the
wing planform, the wing section, and the Mach number. Calculation of
the wing drag requires integration of the pressure distribution over the
wing. The resultant expressions for the drag coefficient on the basis of
supersonic wing theory are usually unwieldy, frequently filling a page.
It is thus desirable to have the drag coefficients made up in chart form
for easy use. References 22 to 25 are examples of papers containing such
charts for a wide range of wing planform, and many others exist. To
reduce the number of charts, it is usual to present the drag results in
generalized form. Consider, for instance, the frequent case of a wing
with straight leading and trailing edges, streamwise tips, and a uniform
wing section. The drag results for such a wing can be presented in a form
generalized for Mach number, thickness ratio, and planform by giving
13CD/7r2 as a function of #A, X, and P3 ctn A,.. The symbol 7 denotes the
thickness ratio of the wing section. Other sets of geometric parameters
besides the above three can be used to specify the planform. An example
of charts of the thickness drag of symmetrical wings is shown in Fig. 9-14
as taken from Puckett and Stewart." Although drag charts are avail-
able for a large number of wings, the range of wing planforms and sections
of possible interest is much larger. Some progress has been made toward
developing rapid computing schemes for calculating the thickness drag of
wings of arbitrary section. The work of Grant and Cooper,2" for instance,
permits a rapid determination of thickness drag for arrow wings of arbi-
trary section for a wide range of leading-edge and trailing-edge sweep
angles. It should be mentioned that the pressure drag of a symmetrical
wing at zero angle of attack is all wave drag on the basis of supersonic
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wing theory. Such pressure drag is therefore frequently termed the
minimum wave drag of the wing.

Since the pressure drag of wings alone has been widely studied by super-
sonic wing theory, it is of interest to know how well such drag estimates
agree with experiment. A decisive comparison between theory and
experiment is not usually possible from force measurements, because the
experimental drag coefficients contain an amount of skin friction which
must be estimated. If the location of transition is accurately known or
if transition is fixed by a device of known drag, then the skin friction can

7 --1r -2"
7-

6

5

-

2

0 0.4 0.8 1.2 1.6. 2.0
(MoL 12 tanw

Fim. 9-14. Pressure drag at zero angle of attack for arrow wing on basis of supersonic
wing theory.

usually be estimated with fair accuracy. Katzen and Kaattari 8 have
made a systematic comparison between the measured and theoretical
drag coefficients at zero lift of a series of triangular wings with double-
wedge airfoil sections with the maximum thickness of 8 per cent at the
midchord. Their calculated drags, obtained by adding the estimated
skin friction to the pressure drag from supersonic wing theory, were gen-

* erally greater than the experimental drags. There is reason to suspect
that the drag estimated by supersonic wing theory might be high under
certain conditions. An examination of the drag curves of Fig. 9-14
reveals a cusped peak in the drag curve when the leading edge, the line of
maximum thickness, or the trailing edge becomes sonic. For the condi-
tion of a sonic leading edge, the shock would not be attached as assumed
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in supersonic wing theory, so that the theory is not valid in the neighbor-
hood of the cusped peaks. It is also physically improbable that the
experimental drag data would attempt to form a cusped peak; the data of
Katzen and Kaattari exhibit no such tendency. Thus, while the experi-
mental and theoretical drags may be in good accord away from the cusps,
the experiment should pass beneath the cusps themselves. The charts of
Puckett and Stewart 25 show particularly high and sharp cusps for arrow
wings of double-wedge section with the maximum thickness well forward.
The theory would be particularly suspect in the region of such cusps.

Let us now turn from pressure drag at zero lift to the drag due to lift
for a wing. As we have already discussed, the drag due to lift contains
significant amounts of wave drag and vortex drag. The drag due to lift
is specified by the drag-rise factor and the lift coefficient as discussed in
Sec. 9-2. For a symmetrical wing

CD - CD. CL2  (9-61)
ACL2

where the drag-rise factor, neglecting viscous effects and coupling pres-
sures due to combining thickness and angle of attack, is from Eq. (9-15)

CD 1 - 1 (9-62)

ZC ' CL,
The factor A is the leading-edge suction factor which measures the per
cent reduction in drag due to lift below the flat-plate value of aCL. For
wings with supersonic leading edges, the leading-edge suction factor is
zero because of the impossibility of leading-edge suction at least in the
mathematical theory. Thus, the drag due to lift follows directly from
Eqs. (9-61) and (9-62). For wings with subsonic leading edges the
mathematical theory, described by Heaslet and Lomax, 27 gives a leading-
edge thrust from suction pressures. For a triangular wing the leading-
edge suction factor p for subsonic leading edges is

(1 - 2 tan2 co)% (9-63)
2E

where o is the semiapex angle, and]B is the complete elliptic integral of
the second kind with modulus (1 - P2 tan2 &w) 6. The foregoing result
can also be used to obtain u for arrow wings with supersonic trailing
edges. In such cases the leading edge of the arrow wing does not "know"
what the sweep of the supersonic trailing edge is. As a result we can
calculate the leading-edge thrust as though the wing were triangular.
The physical force will be unchanged by sweeping the trailing edge as long
as it remains supersonic. The only question is one of changes in reference
area.

While the leading-edge thrust has a definite value in the mathematical
theory, the physical realization of the thrust depends on the shape of the
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leading edge. Sharp leading edges which cause flow separation cause a
loss of significant fractions of the leading-edge thrust. If rounding the
leading edge will delay separation, some increase in leading-edge thrust
can be expected. If separation is the result of a large upwash angle at
the leading edge, such as exists at the tips of sweptback wings at high
angles of attack, then the use of camber to turn the nose into the upflow
can increase the leading-edge thrust.

Illustrative Example

Determine the values of CDo, u, CD,/ACL2, (L/D) 1 , and CLopt for a tri-
angular wing with a double-wedge section having its 8 per cent thickness
at the midchord. Let the wing aspect ratio be 2, the Mach number 1.5,
and let the average skin-friction coefficient for the wing be 0.002.

The pressure drag of the wing at a = 0 can be obtained directly from
the charts of Puckett 2 in the form PCD/r 2 = 4.2. Since the skin friction
acts on both sides of the wing, the minimum drag coefficient is

CD, = 0.0240 + 2(0.002) = 0.028

To obtain the drag-rise factor from Eqs. (9-62) and (9-63), we require
the lift-curve slope which for a triangular wing is

CYa ( 27 tan w
= E(1 - 12 tan2 w)i

where c = wing semiapex angle
E = elliptic integral of second kind of modulus (1 - p 2 tan2 W)Y

# tan t = 1.119(y) = 0.559
sin- 1 (1 - 0.5592) - 56'
E = 1.249

Thus

CL = 27r(O.5) 2.52 per radian1.249
(1 - #2 tan2 W) (1 - 0.5592) 4

ii~~~ = _____ -- 0.3322E 1.249
CD_ 1 _ 1 -0.332

ACL2  CLa 2.52 =0.265

The lift-drag ratio and optimum lift coefficient from Eqs. (9-9) and (9-10)
then are

U-- C = 0.325

(D)f 2 (CD 0YC) ) =5.8
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9-7. Pressure Foredrag of Wing-Body Combinations of Given Shape
at Zero Angle of Attack

We have essentially a problem of wing-body interference in trying to
calculate the pressure foredrag of wing-body combinations of given shape.
For slender wir .body combinations there is the drag formula of Ward,
which in practice does not differentiate significantly between bodies and
wing-body combinations, as we will see in greater detail in the next sec-
tion. For certain nonslender configurations with the panels mounted on
quasi-cylindrical body sections, there are methods exact to the order of
linear theory. By a quasicylindrical body section we mean a body sec-
tion that is closely cylindrical. We will later be concerned with body
sections which lie close to circular cylinders.

FIG. 9-15. Methods of superposing wing and body to form a wing-body combination.

There are several ways in which a wing-body combination can be
formed from a wing alone or a body alone. Two such methods are shown
in Fig. 9-15. In the first method the body is added directly to the wing,
blanketing it in part. The effect of the body on the wing is thus to reduce
the drag by submerging a large part of the wing within the body. Thus,
the interference appears favorable. However, if the wing span gets small
approaching the body diameter, the exposed panels bear little resemblance
to the wing alone. If the wing span is less than the body diameter, the
process is meaningless. A second method having closer correspondence
to a real wing-body combination, particularly for small wing panels, is
also shown in Fig. 9-15. The wing alone is the two panels joined together.
In the formation of the wing-body combination, the two panels are drawn
apart a distance equal to the body diameter, and the body is inserted
between them. We will adopt this second method of forming a wing-
body combination and take the wing alone as the two- panels joined
together. This procedure also has the advantage of a simple rule of
thumb as we will see.

By the wing-body interference we mean the difference between the
drag of the wing-body combination and the sum of the drags of the wing
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alone and the body alone. The wing-body interference is composed in
part of the change in drag of the panels due to the addition of the body
and in part of the change in body drag due to addition of the panels.
Thus, the total combination drag has four components:

Do = DB + Dw + Dw(B) + DB(w)
DB = drag of body alone
Dw = drag of wing alone (9-64)
Dw(B) = drag of wing due to presence of body
DB(w) = drag of body due to presence of wing

The components DW(B) and DB(w) are due to the pressure field of the
interference potential 4p as discussed in Sec. 5-1. The component Dw(B)
is the change in drag of the wing panel by virtue of the difference in its
position in the wing alone and its position in the wing-body combination.
It is the result of two moves; first, separating the two halves of the wing
alone a distance apart equal to the body diameter, and then inserting
the body between the two panels. The component DB(w) can be thought
of as the change in drag of the body due to bringing up two wing panels
from infinity and attaching them to the body.

For a symmetrical wing mounted on a body section of nearly circular
cylindrical shape--a so-called circular quasi-cylinder-the drag of the
wing-body combination can be accurately calculated within the scope of
linear theory by the W-function method described by Nielsen 8 and dis-
cussed in Sec. 4-4. This method makes use of a special function Wm(x,r)
in a numerical solution of the problem. The method is -useful as a stand-
ard against which approximate but simple methods can be checked. One
such simple rule of thumb is to assume that Dw(B) is zero. The basis for
this rule is a series of calculations performed by Katzen and Kaattari on
the drag of triangular panels of a wide range of sizes and aspect ratio
mounted on a circular body. The method used by the investigators is
that of Nielsen and Matteson, 9 a forerunner of the more refined W-func-
tion method mentioned above. The investigators found that, for panels
small compared to the body, the interference drag Dw(B) could be a sub-
stantial percentage of the panel drag but a negligible percentage of the
combination drag. For large panels, the interference drag is a negligible
percentage of the panel drag. From the physical point of view this
means that the panel mounted on a body of revolution acts as -if it were
mounted on a vertical reflection plane, or as if it were mounted in the
wing alone with the other panel present. It is to be emphasized that the
rule of thumb is not applicable to panels mounted on expanding bodies or
contracting bodies which develop longitudinal pressure gradients. In
such cases a correction should be made for longitudinal pressure gradients
by assuming the panels to act in the pressure field of the body alone.
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Let us take up the question of estimating DB(W). For the frequent
case in which the body is cylindrical, DB(w) is zero. If the body is quasi-
cylindrical, the value of DB(w) accurate to the order of linear theory can
be calculated by the afore-mentioned W-function method. For a case
where the body is not even approximately a circular quasi-cylinder, a
first approximation to DB(w) can be obtained by assuming that the body
is acting in the pressure field of the wing alone as given by supersonic wing
theory.

9-8. Wings and Wing-Body Combinations of Least Pressure Foredrag
"-"at Zero Angle of Attack

The problem of shaping a wing or wing-body combination of least
pressure foredrag has received much attention. Historically the search
for wings of low drag at subsonic speeds has been a long and fascinating
story, and long strides have been taken down a similar road at supersonic
speeds. It is true that for many missiles the wing pressure drag may not
be an important part of the total drag. And for other missiles the drag
may be of no importance in the particular tasks for which the missiles
were designed. Nevertheless, a large group of missiles exists for which
the wing wave drag is important, and the group will become larger as the
aerodynamic design of missiles is refined. The growing importance of
drag minimization for missiles or for airplanes cannot be doubted.

We will first consider ways of minimizing the pressure foredrag of wings
alone and then discuss Jones's criterion. Next we will consider the ques-
tion of minimizing the drag of slender wing-body combinations by Ward's
formula, and show how it prepared the stage for Whitcomb's discovery of
the NACA area rule. In this connection the early contributions of the
following authors to the area rule are recognized: Hayes,43 Graham, 7

Oswatitsch and Keune, 8 and- Legendre.6 9 The theoretical extension of
the-NACA area rule to higher supersonic speeds into the supersonic area
rule will be discussed. Also, the importance of body cross-sectional-shape
at high supersonic Mach numbers will be pointed out.

At the onset it must be stated that the minimization of the drag of a
wing or wing-body combination can be accomplished under various
restrictions, as discussed in connection with bodies. If no restrictions
are placed on the wing, for instance, its drag coefficient can be made as
small as desired. This can be accomplished by making the wing very
thin or by sweeping the wing behind the Mach cone and increasing its
aspect ratio. General ways of reducing thickness drag under no restric-
tions are useful, particularly for suggesting new design trends. If we
invoke the restrictions that the wing planform be fixed and that the wing
thickness distribution contain a specified volume, then the Jones criterion
for minimum thickness drag specifies the distribution of thickness over the
planform. This criterion35 says that the thickness distribution will be
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optimum if the pressure gradient in the combined flow field is constant.
Let us explain this criterion for the particular wing shown in Fig. 9-16.

Let the pressure distribution along the section Fhown be Pp for forward

flight and PR for reverse flight. The longitudinal perturbation velocit,
in the combined flow field is the algebraic sum nf the- longitudinal per-

turbation velocities. However, the pressure Pc in the combined flow

field is the difference of the pressure- P -- PR. If thi difference has a
uniform slope dPc/dx over the wing
planform, then the thickness distri- / -
bution is that for minimum thick- /

ness drag. The Jones criterion can
in the direct sense be thought of as a /
test to see if a proposed thickness P
distribution gives the least thickness
drag. For instance, it is known that Pp

a biconvex parabolic-arc airfoil has Forward
a linear pressure distribution in two-
dimensional supersonic flow. It
thus fulfills Jones's criterion and has P,
the least thickness drag for a given Vo Reverse
volume. In another sense the Jones
criterion can be used to determine
the optimum thickness distribution. Pt / -

This Jones has done for a wing of
elliptic planform 6 ,' 42  The general Fxo. 9-16. Example illustrating Jones's

problem of optimizing planform for criterion for minimum thickness drag
for a given wing planform and wing

minimum thickness drag is difficult volu en

to formulate mathematically. How-
ever, for no restrictions, a pJanform swept behind the Mach line and of
infinite aspect ratio will have zero thickness drag.

For slender wing-body combinations, solutions for the area distribution
for least pressure foredrag, or for minimum thickness drag in this case,

can be found by using the drag formula of Ward if this drag formula is
valid for wing-body combinations. In Ward's original article one of the
assumptions was that the curvature must be order l/d at all points where
the body cross section is convex outward, and d is the maximum diameter
of the section. For wing leading edges the curvature is generally much
larger, and it is not clear that the theory applies. However, Ward dis-
cusses the reasonableness of relaxing the assumption in the special case of
a "flat laminar wing of- small aspect ratio with highly sweptback leading

edges." Also, he points out that the wing can come from the body at a
finite angle without the necessity of introducing further approximations
(into slender-body theory). Nevertheless, either it was not realized that
slender-body theory could give significant results for the effect of wing
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thickness on the thickness drag of wing-body combinations, or else the
technological implications of such an applicaion were not realized.
Otherwise, the theory already discussed in See. 9-5 would ha- oeen
appli.ed to wing-body combinations, and the NACA area rule wo, ve

Body Wing.body Equivalent
alone combination body

-:0 01

0.024 /.

0.020

0.016

0.012-

0.008-

0.004

0.016

0.012 / -

,/

0.004 1/

0
0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12

Mo
FiG. 9-17. Experimental results illustrating equivalent-body concept of Whitcomb.

had birth in theory rather than experiment. The experimental dis-
covery of the NACA area rule by Whitcomb brought about the realiza-
tion that the slender-body drag formula applied to wing-body combina-
tions-near sonic speed.

Whitcomb 2 enunciated his well-known NACA area rule. Whitcomb
was testing wing-body combinations in a slotted-throat wind tunnel near
a Mach number of unity. He observed the shocks standing normal to
the flow by schlieren pictures. He made the observation that the body
of revolution and the wing-body combination having the same axial dis-
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tribution of cross-sectional area had essentially the same shock-wave
patterns. On the basis that the piessure-drag is represented by the shock
waves of the schlieren pictures, Whitcomb concluded that the drag of a
slender wing-body combination was equal to that of the equivalent body
of revolution. The equivalent body" of revolution is that body of revolu-
tion having the same area distribution as the wing-body combination.
An experimental verification of the equality of drag between a wing-body
combination and its equivalent body of revolution is shown in Fig. 9-17.
The comparison is based on drag rise, ACDo, which is the drag coefficient
minus the constant valve at low subsonic speeds.

Once an experimental verification was made of the NACA area rule,
its theoretical basis in the drag formula of Ward and the earlier work of
Hayes," as well as the work of
others, was recognized. It was
now possible to design wing-body
combinations of least thickness drag
using the known results for a Sears-
Haack body or a KHrmln ogive.
For instance, to design a minimum
drag wing-body combination near a
Mach number of unity for- a com-
bination of zero base area and of
given length and volume, the area A
distribution of the wing-body com-
bination should be that for the
equivalent Sears-Haack body.
One way in which this can be ac- Section AA
complished is to start with a full Fix. 9-18. Indentation of body to minimize
Sears-Haack body as shown in Fig. pressure drag at zero angle of attack

9-18. Then in the region of the according to NACA area rule.

wing-body juncture, remove as much- cross section from the body in any
crossflow plane as the wing contains. The wing-body combination will
then have the same thickness drag as the Sears-Hiaack body.

Another use of Whitcomb's equivalent-body concept is its application
for determining the thickness drag of a configuration which is not opti-
mum. To do this the configuration should be sliced by crossflow planes
of the kind shown in Fig. 9-18 and the cross-sectional area intercepted by
the planes determined. This procedure will establish the cross-sectional
area S(x) as a function of axial distance. The coefficients b. in the
Fourier series for S'(x) can then be determined numerically and the drag
calculated from Eq. (941). If S'(1) is not zero, the additional terms
exhibited by Eq. (9-16) must be included.

Any rule as general as the NACA area rule must have its limitations.
Since the rule is shown to have a theoretical basis in slender-body theory,

I
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it might be expected to be subject to the same kind of limitations as that
theory. The rule is most accurate for slender configurations lying near
the center of the Mach cone. For a Mach number of unity, the rule
works well even for wings with unswept leading edges. If the leading
edges are highly swept, then the rule will hold into the supersonic Mach-
number range, since the configuration will be near the center of the Mach
cone from the wing-body juncture. However, for a fixed configuration
there will be an upper limit in Mach number, beyond which the NACA
area rule cannot be accurately applied. A scheme to raise the upper
limit to which the equivalent-body concept extends has been advanced
by Whitcomb and Jones. The scheme will be termed the supersonic area

rule. Actually the connections in
z which we will use the rule will be

Y x-l37coso-Pzsiflx 0  one of area only. In a more accu-

rate sense, the rule is one of source
strength rather than area, but its use
in this connection is beyond our con-

templated scope.
The supersonic area rule utilizes

fairly simple geometric construction
as described by Jones 1 and Lomax
and IeasletA0  The cutting planes

FiG. 9-19. Oblique tangent plane char- are no longer crossfiow planes as in
acterized by the parameters xo and 0. the NACA area rule, but are oblique

planes tangent to Mach cones as
shown in Fig. 9-19. The plane shown in the -figure depends on the x
intercept xo and the line of tangency on the cone corresponding to the
angle 0. The equation of the oblique plane shown is

x -/fy cos 0 - 3z sin 0 = x0 (9-65)

The oblique plane corresponding to xo and 0 will intercept an area S(xo,O)
from the wing-body combination as shown in Fig. 9-20. Let S,,(xo,O) be
the projection of this area on any crossfiow plane normal to the x axis;
then

1-X00 S(X o,0) (9-66)

The drag due to thickness of the combination is then

q10f S."(X,0)S,/(,0) = log Ix - [ dx dJ dO (9-67)

The analogy to the first term of the drag formula of Ward, Eq. (9-16),
is clear. For any value of 0 the inner double integral gives the drag of
the equivalent body of revolution for that value of 0. The drag of the
equivalent bodies is then averaged over 0. For a Mach number of unity,

J
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S&(x,o) and S(x,O) are the same, and there is no variation with respect to
0. We therefore get the first term of Eq. (9-16) again. The formula
Eq. (9-67) is limited to the case S'(l) = 0, a pointed base or a tangent-
cylindrical base. The application of the supersonic area rule to any but
simple configurations involves a large amount of work, and is frequently
best accomplished numerically.

As applied in the previous paragraph the supersonic area rule is a
slender-body rule. Its application as a source strength rule has been
investigated by Lomax.3 Briefly, an oblique-plane construction can be
used to determine the axial distribution of sources equivalent to a given
wing-body combination from a drag point of view. Also, the axial dis-
tributions for higher-order solutions such as quadripoles are obtained.

Y Oblique plane

x
Fia. 9-20. Oblique cutting planes as used in the supersonic area rule.

Subject to certain constraints, the axial distributions are modified to
minimize the drag. Then the body shape is calculated. This later step
is usually very laborious if the full accuracy of linear theory is retained,
but it can be simplified by descending to slender-body theory to-calculate
the shape. Another method of minimizing the thickness drag of wing-
body combinations, not necessarily slender, has been used by Nielsen,34

utilizing quasi-cylindrical theory. The difficulty of finding the body
shape is circumvented by applying the body boundary conditions on a
circular cylinder in the usual fashion of quasi-cylindrical theory. How-
ever, if the minimum drag wing-body combination does not have a quasi-
cylindrical body, an accurate solution will not be obtained. Perhaps the
power of these two methods lies in their ability to handle changes in body
cross-section shape which are not significant in the supersonic area, rule.

An important respect in which the supersonic area rule, Eq. (9-67), is
incomplete has been pointed out by Lomax and Heaslet. 0 Specifically,
if there exists a resultant force on the oblique area cut from the missile



302 MISSILE AERODYNAMICS

by any oblique plane of the supersonic area rule (Fig. 9-20) and acting in
that plane, then the rule must be modified to include the effect of this
force. The modification of the rule is easily made since the resultant
force on the oblique area has the effect of changing the oblique area used
in the supersonic area rule in a simple way. The mathematical details
of this extension of the supersonic area rule together with several examples
are given by Lomax and Heaslet30

9-9. Minimizing Pressure Drag of Wings and Wing-Body Combinations
beyond That Due to Thickness

A number of investigators have probed methods for reducing the drag
due to lift of wings alone at supersonic speeds. Such methods include
changes in planform and the use of camber and twist. It is useful to
approach the subject of wing-body combinations of least drag due to lift
in two independent steps at the risk of some possible loss in generality.
In the first step we consider minimizing the drag (exclusive of thickness
drag) of the main lifting member, the wing alone, and in the second step
we take up the problem of adding useful volume in the form of a body.
The first main item on the agenda is a discussion of the components of the
drag of a lifting surface, vortex drag and wave drag, and the lower bounds
for each component. Next we inquire into the methods for achieving
low drag through choices of planform and camber and twist. The next
item involves the application of the general principles to lifting surfaces
of triangular or arrow planform, and the final subject is the addition of
useful volume to the wing in an efficient manner.

The two main components of the drag of a lifting surface are the vortex
drag and the wave drag. In general, a lifting surface discharges a trail-
ing-vortex system, and the kinetic energy per unit streamwise length of
the system is equal to a drag force. Also, as the surface-changes angle of
attack, the shock-wave configuration changes with the shocks becoming
stronger. The result is an -increase of wave drag. The minimization of
these two components of the drag requires certain changes in planform,
and for a fixed planform requires camber and twist. However, before we
look at the separate components, let us examine Jones's criterion for
least drag due to lift of a lifting surface similar to his criterion for least
thickness drag. It is convenient to illustrate the criterion in this instance
in the same way we did for the thickness drag. Consider a lifting surface
as shown in Fig. 9-21. Let us suppose that a given distribution of lift
over the planform is the optimum distribution yielding least drag due to
lift. (In specifying any distribution of lift over a planform we suppose
it to be the result of angle of attack, camber, and twist of the planform.)
The Jones criterion is simply a test ol whether this supposed optimum dis-
tribution is in fact optimum. Let the shape of the lifting surface in
section AA to support the given load distribution correspond to a down-
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wash velocity WF along the section for forward flight. Similarly, let the

wing reverse flight direction, maintaining the same lift distribution. Let

the downwash along section AA be
wR to support the lift distribution in ,,a" ae
reverse flow. If the sum of the ,
downwash velocities wp + wR is con- / /

stant over the wing planform, then //

the lift distribution is optimum.
The Jones criterion is a test of a lift A- A

distribution which for a given plan-
form and total lift allegedly is opti- \ \ //

mum. The criterion does not tell V //

how to find the optimum lift distri- Forward V°

bution, nor does it guarantee the A
existence of such a distribution.

Let us now consider lower bounds
on the vortex drag and the wave drag 8 R

separately, turning first to the vortex K Vo Reverse

drag. At subsonic speeds the drag A wY + WR
due to lift is solely vortex drag. On
the basis of lifting-line theory, the
drag due to lift depends only on the A-- A

shape of the span-load distribution FiG. 9-21. Example illustrating Jones's

and is independent of how the load is criterion for minimum drag due to lift
for lifting surface of given planform and

distributed chordwise. In fact, the total lift.
minimum drag of a lifting surface
or lifting line for subsonic flow is achieved when the span loading is

elliptical and is given by the well-known formula

AC, (9-68)

The reason for recounting the situation at subsonic speeds is that it is

unchanged at supersonic speeds. It will be recalled that the vortex drag

can be determined by considering the trailing-vortex system to trail back-

ward in a rectilinear fashion to infinity, that is, to a region beyond the

influence of the bound vortices. The kinetic energy of the vortex system

is evaluated, using incompressible potential theory in the crossflow plane

at infinity, the so-called Trefftz plane. At supersonic speed precisely the

same theoretical model is used. The horseshoe vortices making up the

trailing-vortex system are supersonic horseshoe vortices. By the time

the Trefftz plane is reached, the flow field corresponds to that at the

center of the lifting-surface Mach cone. At the center of the Mach cone

the velocity field is independent of Mach number. In fact, at the Trefftz
plane the velocity field created by supersonic horseshoe vortices is idea-
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tical with that created by incompressible horseshoe vortices of equal
strength and shape. These considerations explain why the vortex drag
associated with a given span-load distribution is independent of Mach
number and why streamwise loading as such does not influence the 'vortex
drag but only the wave drag.

Let us now examine the lower bound established by Jones3" for the
wave drag of a lifting surface carrying a specified lift. The wave drag for
a given lift is bounded as follows:

Dwavo > M
02 - 1 L 2

- 2 ?rq0 (9-69)

Here 2 is a characteristic mean-squared length of the surface depending
on planform and Mach number and given by

1 1 f2 sin2  dO (9-70)
2 7Jo [/1(0)]2

The interpretation of (0) can readily be made with the help of Figs. 9-19
and 9-22. Fix the value of 0, and thereby specify a series of parallel

z

y

g x-C3y cos 0

FiG. 9-22. Method of determining l(O).

planes with x0 as the distinguishing parameter. Let the first plane,
which is just tangent to the wing planform, correspond to xo = xi. In
the xy plane the equation of the trace of this plane is from Eq. (9-65)

x - ly cos 0 = xz (9-71)

The corresponding plane moving upstream from behind the wing has the
trace

x - Py cos 0 = X, (9-72)
The value of 1(0) is

1(0) = X. - X, (9-73)

If the lifting surface were a line in the streamwise direction, then 1(0)
would be the length of the line for all 0. To put Eq. (9-69) on the basis
of a drag-rise factor, let us introduce some characteristic streamwise
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length l0 of the configuration such as wing mean aerodynamic chord, body
length, etc., and define a factor K*

K* (9-74)

If the coefficients are based on a reference area SR, then we have the
wave drag-rise factor of the lifting surface bounded as follows:

\CL% K* 20 -S (9-75)

The meaning of the present lower bound should be made clear. It is
the bound attained if the wing is elliptically loaded when viewed from any
direction. In particular, the span loading and streamwise loading will
both be elliptical. To approach or achieve the lower bound for a given
planform requires optimization of camber and twist. For a given plan-
form it is not necessarily attainable. For instance, consider a triangular
lifting surface with sonic leading edges. From Eq. (9-68) such a surface

has a value of- (_qD, o 1 a C, D of 0.087 by\A~z/OL of" n vleo ACL/,,

Eq. (9-79). The value of 1 .C--- is thus 0.166 in contrast to an exact
d acul

lower bound of 0.222 calculated by Germain," specifically for a triangular
planform with sonic leading edges. Thus such a planform does not
approach the Jones bound as closely as some other planform might.

Having established lower bounds on vortex drag and wave drag of the
lifting surface, we are in a position to examine the possible effect of plan-
form change on these drag components. An examination of Eq. (9-68)
brings to mind the well-known fact that minimization of vortex drag
requires a large aspect ratio, and this requirement is unchanged at super-
sonic speeds. Now in Eq. (9-75), for "wave drag-rise factor," we can
change K* to a certain extent, but we have infinite control over spect.
The quantity io/iR is what Jones has termed a "longitudinal aspect
ratio." To minimize the wave drag-rise factor we must maximize the
longitudinal aspect ratio. By yawing a rectangular wing behind the
Mach line and decreasing its chord, the value of the drag-rise factor in
Eq. (9-68) or (9-75) can be reduced to as low a value as desired. How-
ever, -if this operation is carried out subject to the constraint that a con-
stant lift be carried, the chord can be decreased only to a certain point
before the boundary layer of the wing will surely separate. Viscosity
thus provides the factor which limits the reduction in drag-rise factor
obtainable through change in planform.

Suppose that an acceptable planform has been found and that we are'1 now faced with the problem of trying to attain the lower bounds of vortex
and wave drag-rise factors given by Eqs. (9-68) and (9-75). Generally
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speaking, no specific design can be carried out to insure that both minima
will be attained. We do, however, have recourse to the Jones criterion to
see whether a proposed design is optimum. Consider a flat lifting surface
as the first approximation. Usually a flat surface will not have an
elliptical span loading to insure minimum vortex drag in accordance with
iq. (9-68). (The triangular wing with subsonic leading edges is the
well-known exception.) To obtain an elliptical span loading we will have
to twist and/or camber the surface. There will probably be a number of
ways in which this can be accomplished, and out of the number it is
hoped that one fulfills Jones's criterion. A practical way of testing
how close a given lifting-surface design is to optimum is to evaluate
CD,/ACL 2 and compare it with the sum of lower bounds of (0D/ACL 2 )V,

and (CD,1/A0L2) ,.. A specific design for a given design lift coefficient
consists of cambering and twisting the surface to obtain a given lift dis-
tribution, or of computing the lift distribution resulting from a given
camber and twist. In any event, knowing the lift distribution and the
camber and twist, all at the design lift coefficient, permits an evaluation
of CD,/ACL2 for the lifting surface at the design point. The CD,/ACL2 of
the design can be compared with the lower bound to assess the excellence
of the design at the design point. At this time it is well to recall in con-
nection with Eq. (9-60) that the total wing drag is due to thickness,
camber, and angle of attack. At the design point the sum of the drags
due to camber and angle of attack equals that of the lifting surface and is
determined by the preceding procedure, although the individual com-
ponents are not determined. The wing drag is then the drag of the lifting
surface plus the thickness drag since the thickness drag is not coupled
with that due to camber or angle of attack. We thus know the lift-drag
ratio of the wing at the design lift coefficient. Since we have minimized
the drag at fixed lift, it is clear that we have maximized the lift-drag ratio
for the design lift coefficient. We have not determined the complete
drag curve, however, since it takes one other point besides CD at the
design CL to establish the drag parabola.

Triangular Lifting Surfaces

Let us now examine the lower bounds on the vortex drag and wave drag
of a triangular lifting surface. First, with regard to vortex drag, it will
be recalled that the span-load distribution is elliptical for minimum
vortex drag, and that for a triangular wing with subsonic leading edges
the span loading is elliptical. The vortex drag is already a minimum, and
(CD,/ACL 2)vo r is given by Eq. (9-68). This component of the drag is
plotted against wing aspect ratio in Fig. 9-23, where it is labeled "optimum
vortex drag."

It is of interest now to try to establish the lower bound of the wave
drag as given by Eqs. (9-70) and (9-75). The traces of the Mach cones
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Fi. 9-23. Drag due to lift for triangular lifting surfaces.
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which establish 1(0) are shown in Fig. 9-24 for 0 = 0, 7r/2, and i-. It is
easy to show that

1(0) = c(1 +m cos 0)

m = - = 0 tanc (9-76)

Because of the symmetry of the problem, the value of K* given in Eq.
(9-74) is

c2 4[,12 sin2 0
K* in ( m COS 0) 2 dO (9-77)12 rJo

which yields

K*=±Ei 2m2 +,(1 2m) tan- 1  + (9-78)

The lower bound of the wave drag of the lifting surface based on the plan-
form area as reference area is from Eq. (9-75)

oC .. m (9-79)

This lower bound has been added to that for vortex drag in Fig. 9-23
where it is labeled "optimum wave drag."

The question naturally arises how close to the lower bound known tri-
angular wing solutions come. First, consider the flat triangular lifting
surface with no leading-edge section. In accordance with Eq. (9-15) the
drag-rise factor is then merely the reciprocal of the lift-curve slope.

CDI,2 1 k1E(ir/2, =) I= - m (9-80)

With leading-edge suction the drag-rise factor from Eqs. (9-15) and (9-63)
is

CD, 1-g [2 (1P2E) -E
ACL CL-- . =E 2J (9-81)

The drag-ris' factor includes both vortex and wave drag. The values
of CD/ACL2 for both cases are shown in Fig. 9-23 for comparison with
the lower bound. The flat triangular wing is fairly far above the
lower bound. At low aspect ratios the wing with leading-edge suction
approaches the lower bound. For fPA = 4 the leading edge is sonic, and
leading-edge suction is zero. The use of camber and twist offers some
gain if a solution with the drag of the lower bound can be found. At low
aspect ratios the drag is almost entirely vortex drag, which is already
optimum. The use of camber and twist therefore does not offer much
potential- gain at low aspect ratios.

To achieve the lower bound requires a triangular lifting surface fulfill-
ing the Jones criterion for minimum drag of a lifting surface carrying a

I]
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given total lift. Several efforts to achieve this lower bound have been
made. S. H. Tsien38 has attempted to obtain the least drag within the
limitation of a conical lifting surface. His results are interesting. For
instance, he finds that, with full leading-edge suction, there are negligible
benefits of camber and twist compared to those of a fiat wing. On the
other hand, with no leading-edge suction, camber and twist can bring the
drag down to that of the flat lifting surface with full leading-edge suction.
This latter result is important if the required camber and twist also allevi-
ate leading-edge separation, which acts to invalidate the theory for a
flat triangular surface. However, it is clear that the absolute minimum
drag for a given lift is not necessarily found within the limitations of
conical lifting surfaces. In fact, Cohen,39 using a different approach,
has achieved a lower drag than Tsien. She superimposes a number of
known solutions for cambered and twisted triangular wings in a search
for the surface of optimum caniber and twist. Whether such a scheme
will be successful depends on whether a linear combination of known
solutions can approximate closely the solution for the optimum shape.
An a priori answer to this question would be difficult to give. However,
as noted in connection with Eq. (9-75), the lower bound of A- for

triangular wings has been found by Germain. 5  His value of 0.222 for a
sonic leading edge is closely approached by the wings of Cohen. The
lower value of 0.166 on the basis of Eqs. (9-68) and (9-75) only shows that
it is not possible to camber and twist a triangular lifting surface with
sonic leading- edges so that the loading is elliptical when viewed from any
direction.

Arrow Lifting Surfaces

One of the efficient types of planforms indicated in the discussion
following Eq. (9-75) is the wing of large aspect ratio with subsonic leading
edges-one maximizing "lateral" and "longitudinal'" aspect ratios simul-
taneously. One class of planforms falling in this general category is
arrow wings with subsonic leading edges. Let us examine the lower
bounds of vortex and wave drag for the class of arrow wings formed by

cutting out part of a triangular wing-as shown in Fig. 9-25. Let the wing
trailing edge remain supersonic. If the arrow wing is cambered and
twisted to support an elliptical span loading, then its vortex drag-rise
factor is given by Eq. (9-68). If the subscript A refers to the arrow wing
formed from a triangular wing denoted by subscript T, then

A = AT (9-82)
a

so that

( AC ),o a y- ,o (9-83)

AL).
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It is clear that cutting away the triangular wing does not alter the value
of P used to calculate the lower bound for wave drag. The lower bound
by Eq. (9-75) is then simply proportional to planform area SR. Therefore

(C~ ~ =a(2CD)wv
ZjCL

2 / W&V6A AL, = a C

Let us see how these lower bounds compare with the drag-rise factors for
a flat-arrow wing with and without leading-edge suction.

'- Investigations which concern triangular wings are applicable in many
instances to arrow wings. In particular, the value of CDz/ACL2 for a flat
lifting surface of arrow planform with a supersonic trailing edge can be
obtained from the observation that, the leading-edge thrust is the same

0.3 - ,Flat, no leading.edge

thrust
2w

0.2
FD.at with thrust

c -ac

0.1

a-. m Wave drag
Optimum vortex drag

0 0.2 0.4 0.6 0.8 1.0
(Mi- 1)1/2 tan

Fro. 9-25. Drag due to lift of arrow-shaped lifting surfaces.

as that for a triangular wing having the same leading edges. If the sub-
script A is used to denote an arrow wing, and T is the triangular wing
with the same leading edges, the drag of the flat-arrow wing is

DA = aA - = aL-AL (9-84)

where T is the leading-edge thrust and j is the leading-edge suction factor
for the triangular wing. With reference to Fig. 9-25 for the definition of
a, the drag-rise factor for the arrow wing is

CD, 1 .AT (dCL/da)T 1
A =L2  (dCldce)A L I a(j (9-85)

We thus require only the lift-curve slope of the arrow wing and the values
of t and dCL/da for the triangular wing in order to obtain the drag-rise
factor for the flat-arrow wing with leading-edge suction.

The sum of the lower bounds for vortex drag and wave drag are shown
in Fig. 9-25 as a function of leading-edge sweep angle for the particular
family of arrow wings with a = 0.5. Also shown is the drag-rise factor
for the lifting surface calculated from Eq. (9-85) with and without lead-
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ing-edge suction. Large gains are indicated if through the ase of camber
and twist the lower bound can be closely approached. It is to be noted
that the drag-rise factor for the arrow planform is potentially lower than
that for the triangular wing by the factor a. As the factor a approaches
zero, so-does the drag-rise factor corresponding to the sum of the optimum
vortex and wave drags. The arrow wing is approaching oblique panels
of infinite aspect ratio swept behind the Mach waves. Although the
lower bound can in principle be made arbitrarily small for such wings,
the mechanism of viscosity is a limiting factor. If the total lift is fixed,
the wing loading goes up as the chord goes down. At some point the
loading is so great that boundary-layer separation must occur, limiting
any further reduction in drag for a constant lift through reductions in a.
Tucker4" has presented an engineering method for approximating the
optimum camber and twist for arrow wings. The use of optimum camber
and twist can have a beneficial effect in controlling boundary-layer
separation since the tips are usually washed out to avoid high tip loadings.

Addition of Usable Volume

We have in reality confined ourselves so far to lifting surfaces with no
volume. The addition of volume in the form of 8ymmetrical wing thick-
ness can easily be made, since the drag due to such thickness is additive
to that of the lifting surface and is not coupled to it. The drag of the
lifting surface is therefore increased by the thickness drag of the wing
alone, and the lift is unaltered. The lift-drag ratio is reduced.

Now what we would like to do is add volume without reducing the lift-
drag ratios of the lifting surface. One interesting approach to this
problem has been proposed by Ferri."1 If a wedge is mounted on the
lower wing surface, the positive pressure field due to the wedge can be
utilized to produce interference lift on the under surface of the wing.
The lift-drag ratio can thus be greater than it would be if the volume were
added as a symmetrical body.

If the volume is added in the form of a body of revolution, the body
upwash will have the same effect as introduction of twist into the wing.
If the wing alone already has optimum twist, it will no longer be optimum
in the presence of the body. The span loading for least vortex drag of
the wing-body combination is that given by slender-body theory (see
ref. 4, Chap. 5). This span loading is closely elliptical, as shown in
Table 6-1.

BASE DRAG

9-10. Physical Features of Flow at a Blunt Base; Types of Flow

The second general component of the total drag of a missile, the base
drag, is not amenable to analysis solely by potential theory because it is
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controlled largely by interaction between the boundary layer leaving the
blunt base and the external, flow. Also, the theory of such interactions is
far from complete, so that we must rely for engineering calculations on
semiempirical correlations of base-pressure measurements. We will be
concerned with two-dimensional airfoils and bodies of revolution.

rIie physical model of the viscous flow in the neighborhood of a blunt
base is sketched in Fig. 9-26. Directly behind the base is a circulating
region of fluid known as the dead water region of pressure pb. Enclosing
the dead water region is the boundary layer from the blunt base, and
enclosing the boundary layer is the outer potential flow. As the bound-
ary layer leaves the base, it mixes with air from the dead water region and
the outer flow, and increases in thickness. The boundary layer con-
verges toward a point on the centerline known as the reattaehment point
and straightens out in the streamwise direction further downstream.

i Pb

FiG. 9-26. Theoretical model of flow behind a blunt base.

Three main types of flow in the region of the base have been discussed
by Chapman, IKuehn, and Larson." These are the purely laminar type,
the transitional type, and the purely turbulent type. The basis for the
classification is the location of the transition point relative to the bound-
ary-layer separation point at the body base and the reattachment point.
If the transition point is downstream of the reattachment point and does
not influence the base pressure, the purely laminar type prevails. If the
transition point lies between the separation point and the reattachment
point, the transitional type prevails. If the transition point lies upstream
of the separation point so that the boundary layer at the base is turbulent,
the fully turbulent type prevails.

The purely laminar type is characterized by the fact that the base
pressure is independent of Reynolds number for very thin boundary-layer
thickness at the separation point. This type, which occurs at very low
Reynolds numbers, can be treated analytically for 5 = 0 as discussed by
Chapman et al.44 The transitional type is not frequently encountered
at low supersonic Mach numbers. However, with the increased stability
of the boundary layer accompanying increases in Mt,,ch number, 47 and
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with a premium on laminar boundary layers at high speeds to reduce
skin friction and aerodynamic heating, its engineering importance is
bound to increase. The transitional type is plagued by the general lack
of understanding concerning the factors controlling the location of the
transition point, and for this reason is the most difficult to treat both
theoretically and experimentally. The purely turbulent type is very
important from the engineering point 6f view, and fortunately is amenable
to semiempirical treatment. Some selected references on transition and
separation are given at the end of the chapter.

9-, 4. Basis for Correlation of Base-pressure Measurements

A number of variables are known to influence base pressure. The
following list includes several of the important variables.

(1) Type of flow: laminar, transitional, or turbulent
(2) Flow dimensionality: two-dimensional or axially symmetric
(3) Angle of attack
(4) Body shape, particularly base configuration
(5) Mach number
(6) Reynolds number
(7) Heating and cooling of body

At the present time the first two variables are considered to be specified
by the problem at hand, and they must be independently varied in experi-
ments. For the time being and until Sec. 9-13, consider the angle of
attack to be zero, and ignore heating and cooling effects. Within those
limitations, variables (4), (5), and (6) will now be treated in the manner
of Chapman,"0 as used by him to correlate extensive base-pressure
measurements.

With reference to Fig. 9-26, let us postulate how the base pressure is
determined. First, the general pressure level in the outer flow enclosing
the boundary layer and the dead water region has a direct influence on
the base pressure. The pressure change from the outer flow to the base
depends on the mixing process between the boundary layer and the air on
each side of it. This process depends on the boundary-layer thickness a
just before separation, and also on the velocity and density profiles of
the boundary layer at separation. On the basis of this hypothesis, the
body shape is important in two ways. The configuration at the base will
be important in determining the average pressure and Mach number of
the outer inviscid flow enclosing the boundary layer and dead water
region. The general body shape will also be significant to the extent that
it controls the boundary-layer thickness at the base through the pressure
distribution. The Reynolds number based on body length will also influ-
ence the boundary-layer thickness. The Mach number will be significant
(1) through the influence it exerts on the average pressure of the outer
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flow enclosing the boundary layer and dead water region, (2) through its
effect on the density and velocity profiles of the boundary layer at separa-
tion, and (3) through the influence it may have on the mixing process
between the boundary layer and the air on each side of it. Let us now
see how variables (4), (5), and (6) might be treated on the basis of the
foregoing hypothesis.

It is possible to eliminate base configuration as a variable in the experi-
mental correlation of the base-pressure measurements if we calculate its

-1-A --2

p 0  B

1

1 2 3 4 5 6 7

FIG. 9-27. Method of evaluating p' together with some specific values.
influence on the mean pressure of the outer flow, using inviscid fluid
theory, and refer the base pressure to the calculated mean value in all
measurements. (By base configuration we mean the shape of the body
in front of the base as far forward as it can significantly influence the base
pressure, and in particular we think of the boattail angle 0 shown in Fig.
9-26.) We, thus, need some pressure representative of the mean pressure
of the outer flow. Chapman" has used a quantity p' for this purpose,
defined to be the average surface pressure that would prevail over the
length of the dead water region if the body were prolonged by a hypo-
thetical cylindrical extension. The model for calculating p' is shown in
Fig. 9-27 for a cone and cone-cylinder together with some values of p'
based on the theory of characteristics. The value of p' is taken one diam-



DRAG 315

eter behind the base. The base pressure Pb is now formed into the ratio
pb/p', which can be used to correlate experimental measurements of base
pressure for different base configurations into a single correlation curve.
The procedure to account for. the influence of base configuration on base
pressure is thus broken down into two steps in accordance with the
following equation:

Pb Pb (9-86)
P0 F

The first factor p'/po is calculated for the particular base configuration
under consideration by inviscid flow theory. The second factor is taken
from experimental correlation curves of a form shortly to be discussed.

Some remarks on the calculation of p' and its influence on base pressure
are convenient at this point. For bodies of revolution at supersonic
speeds the base configuration for three or four diameters in front of the
base can influence p'. If the body is cylindrical for three or four diam-
eters we can take p' equal to po. More specifically, the cylindrical length
should be several multiples of the diameter times (M0

2 - 1) . It is a
property of two-dimensional supersonic inviscid flow that the static
pressure directly behind the airfoil is free-stream static pressure. We
thus have p' equal to po for two-dimensional airfoils. What this means
is that there is no boattail effect on the base pressure of blunt tz iling-
edge airfoils. One possible exception is detached flow at low MNach
numbers. Actually, boattail angle can be varied on a body of revolution
to reduce the total drag. Increasing the boattail angle will increase 6v1
pressure drag of the body in front of the base. However, it can raise
p' above free-stream pressure, so that the base drag decreases. The
least total drag usually occurs for nonzero boattail angle.

Turning now to variable (5), the Mach number, it is not immediately
evident which number we should choose since the Mach number can
potentially influence the base pressure in at least three ways, as pre-
viously mentioned. If the effect of Mach number were principally felt
through its influence on the mixing process, then the average Mach
number of the outer flow over the mixing length would be a useful one for
correlation purposes. A Mach number that has proved helpful in cor-
relating data is M', corresponding to the pressure p'. This Mach number,
which is used henceforth, also helps to eliminate the effect of base con-
figuration on the Mach number over the wake region in the same way that
p' minimizes the effect of base configuration on the mean pressure of the
outer flow over this region.

The final variable which we are considering, the Reynolds number,
exerts its primary influence for a constant type of flow, i.e., laminar,
transitional, or turbulent, through its effect on 5/h. To be sure, the
boundary-layer thickness 5 of the boundary layer just at separation is
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dependent also on Mach number-and on over-all body shape. As for the
Mach number, we retain it as a parameter in the correlation of base-
pressure measurements, but we neglect any influence the body shape
through pressure gradients may exert on the thickness of the boundary
layer at separation. For a fixed value of M' we thus have tb at the
boundary-layer thickness depends on the Reynolds number as for a flat
plate. For a laminar boundary layer of length L

(Re) -  (9-87)

where Re is the Reynolds number based on length L. For a turbulent
boundary layer

7 (R(9-88)

This completes the discussion of how the three variables-body shape,
Mach number, and Reynolds number-determine the average pressure
of the outer flow, the ratio of boundary-layer thickness to base height at
separation, and the density and velocity profiles-three parameters
which in the hypothesis determine base pressure.

We are now in a position to write the form of the correlation equation
for variables (4), (5), and (6) with variables (1), (2), (3), and (7) held con-
stant. In fact, a correlation in the following form is indicated on the
basis of the preceding discussion:

,- f M, (9-89)

The functional relationship indicates that the ratio pb/p' should be a
unique function of b/h for constant values of M'. It is frequently con-
venient in engineering practice to use the Reynolds number in lieu of the
boundary-layer thickness. On this basis the correlation has the follow-
ing analytical form for laminar boundary layers at separation,

p = fh M, h R)e (9-90)

and the next form for turbulent boundary layer at separation,

p, = ,MhRe9-)

The subscripts on f, and f2 are merely used to indicate that the functions
differ from f of Eq. (9-89) and from each other. The validity of the
hypothesis leading to the form of the correlation is, of course, to be
judged by the accuracy with which it correlates data from systematic
tests.
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With correlation curves of the functional forms given by Eqs. (9-90)
and (9-91) we can calculate the base pressure in two steps in accordance
with Eq. (9-86). The first parameter p'/po is calculated from inviscid
flow theory. The second factor pb/p' is obtained from correlation curves
of the type just discussed.

9-12. Correlation of Base-pressure Measurements for
Blunt-trailing-edge Airfoils and Blunt-base Bodies of Revolution

Systematic base-pressure measurements have been made by a number
of investigators. For bodies of revolution, those of Chapman 0 are fairly
extensive for Mach numbers up to 2, covering as they do the fully turbu-
lent case and the transitional case. For blunt-trailing-edge airfoils the
data of Chapman, Wimbrow, and Kester5 are available for both cases
for Mach numbers up to 3.1, and the data of Syvertson and Gloria49 are
available for the transitional case for Mach numbers from 2.7 to 5.0.
Before presenting correlation of these and other data let us note the
difference in symbols between airfoils and bodies. The base pressure for
airfoils is referred to po, and for bodies to p', in accordance with the dis-
cussion of the previous section. The Mach number of correlation is M9
for the airfoils and M' for the bodies. The over-all length is the chord c
for the airfoils and length L for the bodies. The common symbol h is the
trailing-edge thickness for the airfoils and the base diameter for the
bodies of revolution. The base drag is proportional to 1 - pb/po. Cor-
relation curves of base pressures are presented in Figs. (9-28) to (9-32),
inclusively, for use in engineering calculations.

In discussing the correlation curves, let us first consider the fully turbu-
lent case and then the transitional case. Under each case let us first
discuss airfoils, and then bodies of revolution. The discussion of airfoils
for the fully turbulent case revolves around Eq. (9-91). First, consider
the influence of Mach number as the basic strong effect on base pressure.
This basic effect would be manifest by a correlation of data for wings with
thin boundary layers at the trailing edge since we would not expect much
dependence of base pressure on b/h for thin boundary layers. Such a
correlation is presented in Fig. 9-28. Functionally, this curve can be
thought of with reference to Eq. (9-91) as

b = f2(Mo,O) (9-92)
P0

A large decrease in base pressure accompanies increases in Mach number,
in accordance with the attempt of the base pressure to approach a
vacuum. The basic effect of Mach number can conceivably be caused
by changes in the shape of the boundary-layer density and velocity pro-
files at separation, by changes in the mixing process behind the airfoil,
etc. The second factor appears to be more important than the first.
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We can imagine the changes in base pressure, superimposed on top of
the basic Mach-number effect, as the boundary layer changes from thin
to thick. The changes are represented by the variations of pb/po with
the boundary-layer thickness parameter, c/h Rei, shown in Fig. 9-29.
For the two lower Mach numbers the influence of the boundary-layer
thickness on the base pressure is not large. In fact, the over-all change in
base pressure is small when we consider that the airfoil boundary-layer
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thickness becomes as great as or greater than the trailing-edge thickness.
At the Mach number of 3.1, the variation of base pressure with boundary-

layer thickness is, however, larger than for 1.5 and 2.0
An examination of the correlation curves for bodies of revolution with

fully turbulent boundary layers shown in Figs. 9-30 and 9-31 reveals the

same qualitative effects of Mach number on base pressure for bodies as
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FIG. 9-30. Base-pressure correlation for bodies of revolution with relatively thin
turbulent boundary layers.

for airfoils. However, the base pressure is generally higher than for air-
foils at the same Mach number. This means that it is harder to maintain
an "axially symmetric vacuum" than a "two-dimensional vacuum."
The variation of the base pressure with boundary-layer thickness shown
by Fig. 9-31 is nil. One reason for this might be that the base diameter
for a body of revolution is much greater than the boundary-layer thick-
ness; that is, the ratio ,/h is certainly much smaller for a body of revolu-
tion than for an airfoil, as evidenced by the range of c/h Reg for airfoils
in Fig. 9-29 compared to L/h Reg for bodies of revolution in Fig. 9-31.I

j
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While the fully turbulent case is important in engineering missile
applications, the transitional case is important for high speeds where heat
transfer dictates a laminar boundary layer. In addition, increases in
Mach number under certain circumstances have a stabilizing effect on the
laminar boundary layer. See, for instance, the work of Czarnecki and
Sinclair. 7  They found that cooling a parabolic body of revolution below
the equilibrium temperature increased the length of laminar flow, and at
high Mach numbers such cooling is mandatory for preserving the strength
of missile structure. From the same sources previously mentioned,
mean base-pressure correlation curves are presented in Fig. 9-32 for the
transitional case. Before a discussion of the curves, a word of caution is
necessary concerning their use. In the transitional case the base pressure
is strongly influenced by the distance of the transition point behind the

0.8 . . ..
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0.6
p

0.4 0 0.1
0 00. 0.2 0.3 4 0.5

L

FIG. 9-31. Effect of Reynolds number on base pressure of bodies of revolution with
turbulent boundary layers.

base. As a result, any of the numerous factors that can change the loca-
tion of the transition point becomes a primary variable influencing base
pressure. In the wind tunnel where these results were measured, the
location of transition turned out to be dependent primarily on M' and
8/h. Happily then, the base-pressure data correlated ox the basis of
these two variables. In applications where other than the two foregoing
variables can influence transition location, the correlations of Fig. 9-32
are only a first approximation. In the transitional case, the base pressure
varies between the limits of base pressure for the purely laminar case,
when the trensition point is near the reattachment point, and base pres-
sure for the turbulent case, when the transition point is near the separa-
tion point. These limits remain unchanged when new variables other
than M' and 5/h influence transition, but the path between the limits
is altered.

For the two-dimensional case the base pressure shows a rapid rise as
the correlating parameter c/h Re6 increases. For small Reynolds num-
bers and large values of the correlating parameter the transition point is
near the reattachment point, and the base pressure has the high value
characteristic of the wholly laminar case.
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The Reynolds number can be increased up to a critical value without
moving the transition point. However, further increases in the Reynolds
number cause the transition point to move toward the base and bring
about the large depression noted in the base pressure. For bodies of
revolution a similar result is observed. In this instance the base pressure
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Fio. 9-32, Base-pressure correlations for (a) airfoils and (b) bodies of revolution with
boundary layers turning turbulent behind the base.

decreases gradually as the Reynolds number is increased. The funda-
mental differences between the effect of Reynolds number for airfoils and
bodies of revolution in the transitional case may be related to fundamental
differences in the transition process in two-dimensional and axially sym-
metric flows.

9-13. Other Variables Influencing Base Pressure

Because we can discuss only qualitatively the influences of angle of
attack, tail fins, and heating or cooling on base pressure, we have deferred

V
.1
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consideration of these variables until now. First, for the variation of
airfoil base pressure with angle of attack, data are available from Chap-
man et al.61 For the purely turbulent case, little variation in base pres-
sure occurs up to 5' angle of attack, the limit of the tests, for Mach
numbers of 1.5 and 3.1. Changes in angle of attack can conceivably
influence the base pressure through changes in p' or 6. However, it is a
property of two-dimensional supersonic flow that p' is not sensitive to
angle of attack. Also, for a turbulent boundary layer, pressure gradients
would not be expected to change the boundary-layer thickness at the
wing trailing edge appreciably for an angle of attack of 5*. These results
explain the small changes in base pressure with angle of attack. If for
higher angles of attack the trailing-edge shock wave should succeed in
separating the upper boundary layer ahead of the trailing edge, the entire
model shown in Fig. 9-26 will be altered, and changes in base pressure
could result.

In contrast to its influence for the fully turbulent case, angle of attack
can induce large changes in base pressure for the transitional case. If the
transition point remains close to the reattachment point, it might be
anticipated that the base pressure will remain constant. As a matter of
observation the base pressure in some instances remains constant up to a
small angle of attack, and then suddenly jumps to a higher value at a
sharply defined angle of attack. If the angle is now decreased, the base
pressure will again fall suddenly but sometimes with hysteresis. The
phenomenon can be explained by a sudden shift in the transition point
from a location near reattachment point to a position near the base.
Such transition phenomena are, however, beyond the scope of engineering
prediction at this time.

For bodies of revolution with a turbulent boundary layer, there is a
gradual decrease in base pressure as the angle of attack increases. The
decrease for a given change in angle of attack will become smaller as the
Mach number increases because the limiting pressure of zero is being
approached.

Some systematic tests on the influence of tail fins on base pressure for
the fully turbulent case have been presented by Spahr and Dickey.4"
Tai1 fins change the general pressure level in the region of the outer flow
around the dead water region but not in an axially symmetric fashion.
It might be expected that their influence can be qualitatively treated like
that of boattail, by taking into account the wing thickness pressure dis-
tribution. For the particular rectangular tail panels of Spahr and
Dickey, negative pressure was induced behind the body base by the tail
thickness pressure distribution when the trailing-edge was at the base of
the body. As a result, a large increase in the base drag occurred. Mov-
ing the tail forward about 1 chord length at Mo = 1.5 and 2.0 eliminated
the increase in base drag. By control of the airfoil section and the plan-

I!
;-,1;
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form of the tail panels to induce positive pressure increments at the base,
drag reduction can in principle-be realized.

Heating or cooling of the boundary layer by heat transfer from the
wing or body can affect the base pressure in a predictable manner. If
heat is transferred from the body to the boundary layer, for instance by
heating a test model, the boundary-layer temperature and speed of sound
will be increased, and its Mach number will be lowered. With reference"
to Fig. 9-28, it is seen that the base pressure pb will thus tend to rise. If
the boundary layer is cooled by absorbing heat in the wing or body, the
opposite effect will occur. Kurzweg' 6 presents some systematic measure-
ments for the effects of heat and cooling on base pressure of cone-cylinder
combinations for Mach numbers from 2.5 to 5.0. He finds, as predicted,
that addition of heat from the body to the air does increase the base
pressure over that for no heat transfer, and cooling of the air by the body
decreases the base pressure. In high-speed flight it will be necessary to
cool the wing or body, that is, to lower the boundary-layer temperature
below that for the adiabatic case, so that a decrease in base pressure will
occur. Changes in boundary-layer thickness and changes in density and
velocity profiles can also contribute to the net effect of heating or cooling
on base pressure.

SKIN FRICTION

9-14. General Considerations of Skin Friction at Supersonic Speeds

The third general component of the drag is the skin friction. By the
skin friction r we mean the shearing force per unit area acting tangentially
to a surface in motion relative to the viscous fluid adjacent to it. Skin
friction and base drag, both being manifestations of viscosity, have much
in common. For instance, we distinguish the same three cases for skin
friction as for base pressure: laminar, transitional, and turbulent. The
problems of skin friction and heat transfer in high-speed boundary layers
are inseparable because the differential equations governing the boundary-
layer velocity and temperature gradients are strongly coupled. It is a
simple matter to determine the heat-transfer coefficient from the skin-
friction coefficient if Reynolds analogy applies as it frequently does.
However, we will not consider any heat-transfer calculations but will con-
fine the discussion to drag. First, we describe the fundamental bound-
ary-layer phenomena underlying skin friction in high-speed boundary
layers, together with common terms used in that connection. We next
present the "mean-enthalpy method" for calculating laminar skin fric-
tion illustrated by a calculative example, and then take up the same sub-
ject matter in connection with turbulent skin friction. Finally, we con-
sider such matters as boundary layers with transition and application of
flat-plate results to bodies of revolution.

I/

It
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The notation and units for the calculation of skin friction of high-speed
boundary layers can be confusing since heat transfer and skin friction are
simultaneously involved. Since this is the only part of the book where
such notation is used, it seems desirable to list the notation together with
an engineering set of units at this point.

SYMBOLS FOR SKIN FRICTION

cp local skin-friction coefficient, Eq. (9-101)
cp specific heat of air at constant pressure, Btu/(lb)(*R)
OF average skin-friction coefficient over interval 0 to x
Do drag of cone due to skin friction, lb
DP drag of flat plate due to skin friction, lb
g acceleration due to gravity of earth, 32.2 ft/sec2

h enthalpy of air, Btu/lb
h0, h,, h, enthalpy of air at temperatures To, Tn, Ts, respectively, Btu/lb
hi zero of enthalpy scale, internal energy of perfect gas at absolute

zero
hc enthalpy corresponding to stagnation temperature (and pres-

sure), Btu/lb
J mechanical equivalent of heat, 778 ft-lb/Btu
k thermal conductivity of air, Btu/(ft)(sec)(°R)
L length of boundary-layer run on cone, ft
M0 free-stream Mach number
p static pressure, lb/ft2

Pr Prandtl number, g9c,/k
qo free-stream dynamic pressure, lb/ft2

r recovery factor for temperature, (TR - To)/(Ts - To)
rh recovery factor for enthalpy, (h. - ho)/(h, - ho)
R gas constant for air, 1718 ft 2/(sec 2)(°R)
Re Reynolds number Vopxl/
s distance along slant surface of cone, ft
Se cone area, ft2

T static temperature, OR
.To free-stream static temperature, OR
Ti 491.7 0R,
TB recovery temperature of insulated surface, OR
Ts free-stream total (stagnation) temperature, °R
Tt total temperature, °R
T, wall static temperature, OR
T* reference static temperature, °R
u velocity parallel to plate, ft/sec
Vo free-stream velocity, ft/sec
x, y plate coordinates, Fig. 9-33, ft
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, - ratio of specific heat at constant pressure to that at constant
volume, average value between temperatures To and Ts
when barred

8boundary-layer thickness, ft
semiapex angle of cone, degrees

0 momentum thickness of boundary layer, ft
A absolute vis-osity, slugs/(ft)(see)

3.58 X 10- 6 slug/(sec)(ft), reference viscosity used in Fig. 9-34
for 491.7'R1 and atmospheric pressure

v kinematic viscosity, ft 2/sec
p mass density of air, slugs/ft3

r skin friction, lb/ft2

7C skin friction with compressible flow (with aerodynamic heat-
ing), lb/ft2

skin friction with incompressible flow (no aerodynamic heat-
ing), lb/ft

average skin friction between 0 and x

Superscripts and Subscripts:
0 referring to free-stream conditions or evaluated at To as po, p0,

Vo, 70
W evaluated at Tw as ,.w, ow, pw, or at wall as rw
* evaluated at T* as Re*, Pr*, p*, cp, j*, h*

In the following sections we consider boundary layers which are purely
laminar, transitional, and purely turbulent. Some preliminary knowledge
on the part of the reader concerning boundary layers is assumed. Certain
of the physical concepts and definitions pertaining to boundary layers are
common to all three cases. It is our purpose to discuss at this time such
of these as we shall require. To this end Fig. 9-33 has been constructed,
showing in its upper part the boundary layer formed on a flat plate
mounted at zero incidence as in a wind tunnel with a free stream of uni-
form velocity, temperature, and Mach number. The first quantity
which describes the boundary layer is its thickness 8 as a function of x.
No sharp outer edge of the boundary layer can be discerned, so that some
arbitrary definition is necessary. One such definition states that the
thickness a of the bouhdary layer corresponds to that position where the
velocity parallel to the plate has reached 99 per cent of the free-stream
velocity. The velocity u parallel to the plate can then be expressed in
nondimensional form.

= (in (9-93)

The function f describes the velocity profile shown in the figure. For a
low-speed laminar boundary layer we have an approximately parabolic

I
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velocity profile. For turbulent flow n = 14 at low Reynolds numbers
and n = 6 at high Reynolds numbers except for a laminar sublayer.

Corresponding to the velocity profile there is also a static temperature
profile as well as a total temperature profile. The static temperature is the
temperature a thermometer would register if moving along with the local
fluid velocity; the total temperature is the temperature of the fluid if
brought to rest with respect to the plate with no energy transfer. If the
velocity parallel to the plate at any position in the boundary layer is

Transitional

Turbulent
VOL Lamninar!
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Vo,

I cJ I
I) I

T T
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II

S Vu TRTSTor T
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Fia. 9-33. (a) Velocity and (b) temperature profiles in high-speed boundary layer of
insulated plate.

represented by u, then the total temperature and static temperature are
related by

T, = T + U' (9-94)

Here 5, is the specific heat at constant pressure at its average value
between T and T1. In cases where the specific heat c, is too variable to
be replaced conveniently by its average value (although this can in
principle always be done), we can say that the total and static tempera-
tures are related ,hrough their corresponding enthalpies (a function only
of pressure and temperature)

U2

ht h + - (9-95)
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The total temperature corresponds to that enthalpy which the local fluid
mass would have if it were brought to rest with respect to the plate with-
out any net change in work or energy such as viscous work, heat conduc-
tion, or radiation crossing the surface that contains it.

Consider now the case of an insulated plate. As the viscous layers
shear one over the other, they do mechanical work on the layers between
them and the plate. Since the plate is insulated, the temperature of the
inner layers is thereby raised. To maintain an energy balance, the
energy supplied to the inner layers by viscous work must be conducted
outward again by heat conduction. It is clear that the temperature of
the insulated plate will rise until the heat transferred outward from the
inner layers is in balance with the viscous work done on them. The plate
equilibrium temperature is called the recovery temperature. Let us
examine the static temperature variation through the boundary layer
during this physical process. At the wall we have no heat transfer, so
that OT/Oy is zero as shown in Fig. 9-33. However, away from the wall
the static temperature falls in the outward direction, and the heat conduc-
tion is away from the plate. Near the edge of the boundary layer the
gradient is again small, since the shearing force is small, together with
the rate work is being done on the fluid between the edge of the boundary
layer and the flat plate.

The total temperature profile across the boundary layer of the insulated
plate is of interest. At the wall the static and total temperatures are
equal and have the common value called the recovery temperature.
Since Tt is a measure of the total energy per unit mass of fluid, it must
have an average value across the boundary layer equal to Ts, the free-
stream total temperature. As a consequence there are regions in the
boundary layer where Tt is greater than the free-stream stagnation tem-
peratures. For the insulated plate we have STt/Oy is zero at the plate
(as well as OTlOy) by direct application of Eq. (9-94) with u = 0 at the
wall.

The idea of recovery temperature has been explained. For air the
recovery temperature lies somewhere between To and Ts. Such behavior
is typical of a fluid having a Prandtl number less than unity. The
recovery factor r is a quantity used to specify the recovery temperature

TR - Tr= - T0  (9-96)

The recovery factor is thus a measure of how-close the recovery tempera-
ture approaches the free-stream stagnation temperature. It is frequently
convenient to define a recovery factor based on enthalpy

h, - h(997)rj, =h, - ho (-7
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This factor is convenient when the specific heat is varying rapidly with
temperature over the range of interest, as when dissociation or ionization
occurs.

Before considering how the temperature variation through the bound-
ary layer affects the skin friction, let us consider what happens when the
plate temperature is not Tn. If, by means of internal cooling of the plate,
its temperature is dropped below Tiz, there will be heat conduction to the
plate. The slope of the static temperature profile at the wall will not be
zero, as shown in Fig. 9-33, but will be positive. Also, the average value
of T through the boundary layer will be lower. The same comments
apply to Ti. We will consider skin friction under circumstances of cool-
ing and heating of the plate with the plate temperature Tw less than or
greater than the recovery temperature TR.

Until now we have made no distinction between the flat plate in the
wind tunnel and a flat plate flying through still air. So far as the present
analytical representation of the temperature and velocity profiles is con-
cerned, there is no essential difference. However, there are certain
differences as far as energy transfer is concerned. In the wind tunnel,
air in a reservoir at stagnation temperature Ts is expanded to some
velocity V0 and a static temperature To less than Ts. The free-stream
air in motion does work on the boundary layer of the plate, and thereby
raises the boundary-layer static temperature. The static temperature
difference between the boundary layer and the free stream conducts heat
back into the free stream. In flight in still air at static temperature To,
the plate moves through the still air at high speed. In so doing, the plate
does work on the boundary layer, raising its static temperature. The
static temperature difference between the boundary layer and the free
stream sets up heat conduction into the free stream. The direction of
heat conduction is still the same. However, in the wind tunnel the work
to heat the boundary layer comes out of the free-stream flow, but in
flight the work comes from the plate.

Let us now examine how the temperature and velocity profiles enter
into determination of the skin friction. The skin friction is related to
the velocity gradient for small gradients through the absolute viscosity by
definition

Ou (9-98)

We assume that p does not depend on the gradient OulOy for the magni-
tudes of the gradients we are considering. The absolute viscosity A is
dependent only on T, but through' division by density it becomes the
kinematic viscosity v which is dependent on temperature and pressure.

P= 1./P (9-99)
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By applying Eq. (9-98) at the wall to obtain the skin friction there, we
have

7W = !W (9-100)
7Yw

The value of Aw depends on the temperature at the wall, and the value of
(au/Oy)w depends on the velocity profile.

It is interesting to see how aerodynamic heating influences skin friction
through opposing effects in the two terms of Eq. (9-100). What is
meant by the effect of aerodynamic heating on skin friction? Let the
free-stream flow conditions approaching an insulated nonradiating plate
be fixed for the discussion. If we ignore aerodynamic heating, the plate
will not heat up. The skin friction can then be calculated from incom-
pressible-flow theory or correlations strictly valid for M = 0. However,
if we consider aerodynamic heating, the plate will heat up. The skin
friction must then be calculated by a method which accounts for the fact
that the Mach number is not essentially zero, and the calculated skin
friction will be lower than for no aerodynamic heating. This reduction in
7 w is what we term the effect of aerodynamic heating on skin friction.
Specifically, the increased plate temperature has the direct effect of
increazing pw in ,q. (9-100), and thereby increasing Tw. However, the
inc undary-layer temperatures have a diminishing influence on
(Ou/coy)w, which is conveniently thought of as a Reynolds-number effect.
The increased temperatures reduce the densities and increase the vis-
cosities in the constant-pressure boundary layer of the plate. The result-
ing decrease in Reynolds number is known to increase the boundary-layer
thickness 5 for both laminar and turbulent boundary layers. Since
(Ou/Oy)w is inversely proportional to 5, aerodynamic heating has brought
about a decrease in (Ou/Oy) w. In fact, this influence of aerodynamic
heating on (Ou/Oy)w more than offsets the increase in juw, so that rw is
reduced.

If we know the velocity profile and the surface temperature, we can
calculate the skin friction from Eq. (9-100). More frequently the skin
friction is obtained from experimental correlations of the skin-friction
coefficient. The local skin-friction coefficient is defined by

p T ,(9-101)

where p* is the density evaluated at some convenient reference tempera-
ture. For incompressible flow, p* is taken as the free-stream density
P0. We define also the local Reynolds number based on the distance a
from the plate leading edge and a reference temperature T*.

Re* VOxP* (9-102)
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The Prandtl number based on T* is

Pr* - k (9-103)

Sometimes the average skin friction i between 0 and x is desired rather
than the local values. An average skin-friction coefficient based on 7 can
be defined

jF = 7pV2 (9-104)

For low-speed flow, T* is usually free-stream temperature. Determining
a proper value for T* in high-speed boundary layers is a problem we will
discuss shortly.

9-15. Laminar Skin Friction, Mean-enthalpy Method

The general mechanisms whereby aerodynamic heating influences skin
friction have been conveyed in the previous section, and in this section an
engineering method will be discussed for the calculation of laminar skin
friction. Several methods are to be found in the literature for the calcula-
tion of heat transfer and skin friction in high-speed boundary layers, nota-
bly the mean-enthalpy method used by Rubesin and Johnson," and sub-
sequently by Eckert. 6 The mean-enthalpy method, applied by Rubesin
and Johnson to laminar boundary layers, was applied to turbulent bound-
ary layers by Sommer and Short."6 The essential point of these methods
is to find some reference temperature which will give the skin friction of
the high-speed boundary layer if used to evaluate the temperature-
dependent quantities in the well-known solution for incompressible
laminar boundary layers on a flat plate (Blasius solution). If such"a
reference temperature can be specified, the problem of the high-speed
laminar layer is reduced to an equivalent low-speed problem. We are
in the fortunate position of being able to test any particular scheme for
finding such a reference temperature. Numerical solutions are available
for laminar boundary layers which take into account all the temperature-
dependent physical properties such as ci,, k, and p. Comparison of any
prospective engineering method for calculating laminar skin friction of
high-speed boundary layers with the exact numerical theory discloses the
accuracy of such a method. On the other hand, exact solutions can also
be used to determine what reference temperature would give the high-
speed laminar skin friction if used in the low-speed theory.

The temperature profile in a high-speed boundary layer is dependent
on the free-stream temperature To, the plate temperature Tw, and the
free-stream Mach number M0 . Let us replace the free-stream Mach
number by an independent temperature parameter, the stagnation tem-
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perature Ts of the free-stream flow

Ts = To(1 ± 2-+ M02) (9-105)

Eckert gives two methods of determining the reference temperature T* in
terms of these three independent temperatures: To, Tw, and Tz. The
first method is useful when the variation in specific heat c, is not large.
In this case Eckert gives the following empirical result for T*.

T* = To + 0.5(Tw - To) + 0.22r 0 -1 M0 To (9-106)

T* = To - 0.5(Tw - To) + 0.22r(Ts - To)

The temperature recovery factor r depends on the Prandtl number Pr*
evaluated at T*.

r = (Pr*) (9-107)

The Prandtl number is not sensitive to T*. To obtain T*, first assume a
value of T*, obtain r from Eq. (9-107), and compute a new value from
Eq. (9-106). The second method for obtaining T* based on enthalpy
has essentially the same form as the first method.

h* = ho + 0.5(h. - h0) + 0.22rh(h, - h0) (9-108)

The enthalpy recovery factor rh is also given by Eq. (9-107). If the
specific heat c , is constant, the two methods give identical results. For
rapidly changing c, as in a dissociating boundary layer, the second
method is preferable.

The definitions of the skin-friction coefficient and Reynolds number,
Eqs. (9-101) and (9-102), have been presented in such a fashion that the
skin friction can be calculated once the reference temperature T* is
known.

CF - 0.664

*V0 2 (9-109)
p *cp 2

To carry out the calculation we need the values of u, h, and Pr as a func-
tion of temperature. The value of p is given with sufficient accuracy for
undissociated air by the gas law.

P
P = (9-110)

where R = 1718 for the units of p, p, and T given in the list of symbols in
the previous section. Small plots of the temperature-dependent physical
quantities are given in Fig. 9-34 for ordinary engineering calculations.
For precise calculations the tables of Hilsenrath et al.57 are available.
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The reference values for Fig. 9-34 are

Mui = 3.58 X 10-7 slug/(Sec)(ft)
Ti= 491.7*R

R1= 1718 ft2/(sec 2)(0 R) (9-111)
h,=internal energy of perfect gas at temperature

of absolute zero

Illustrative Example

Determine the reference temperature T*, the recovery temperature TR,
and the local skin-friction coefficient (laminar) a distance 1.0 ft behind the
0.80[ 4.5 -1.45 -3 -15-----------------------h1 hh,

0.75 -4.0 -1.40 -2 1----- ---- - -

0.0 35 135- -5- - - -, 0-

0.65L 3.0L 1.30L 0 0 ----------------0 500 1000 1500 2000

Fl(;. 9-34. Variation with temperature of certain physical constants for air.
leading edge of an insulated plate in a stream of static temperature 4000R,
a Mach number of 3, and a pressure of 500 lb/ft2. Use the constant
specific-heat method. Neglect radiation.

As a trial value of T* use 800'R. From Fig. 9-34 Pr* is 0.684, and
from Eq. (9-107)

r =(0.684);1 0.827

Using a value of -? =1.4, we obtain for the stagnation temperature by
Eq. (9-105)

Ts=400(1 + 1.-2 2

-1120'R

The recovery temperature by Eq. (9-96) is

Tt=To +I r(Ts -To)
= 400 + (1120 - 400) (0.827)

=995*p
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We can now check the assumed value of T* by Eq. (9-106). For an
insulated plate Tw = TR, neglecting radiation,

T* -- 400 + 0.5(995 - 400) + 0.22(0.827)(1120 - 400)
= 829*R

The values of T* could be further improved by repeating the process with
T* = 829°R as a trial value. The change in Pr* with T* is not large

enough to warrant another approximation in this instance.
Let us now calculate the skin friction and skin-friction coefficients for

x = 1.0 ft with the help of Eq. (9-109). To obtain CF we need Vo, p*, and
*. Since the speed of sound is (-yRT)3, we have

Vo = (-'oRTo) Mo
Vo = [1.403(1718)400]3(3) = 2950 ft/see

The gas law, Eq. (9-110), yields
p* = T 600

*1718(829) = 0.000351 slug/ft3

The viscosity ratio from Fig. 9-34 is 1.46

L - =1.46

* = 1.46(3.58 X 10- 7)

= 5.22 X 10- 7 slug/(ft)(see)

The Reynolds number based on the reference temperature is
Re* Voxp* 2950(1.0)(3.51)10-1

S- = 5.22 X 10- 7

1.98 X 106

The local skin-friction coefficient is

cp = 0.664(Re*) - ; = 0.664(1.98)-6(10-1)
= 0.00047

The skin friction- is

(4.7 X 10-4)(2950)2(3.51 X 10- 4)

2
= 0.72 lb/ft2

It is of interest to see how much the influence of T* on the skin friction
is. For no aerodynamic heating, but for the same V0, the value of T*
would have been 400'R rather than 8290R. Let us call r, the skin friction
taking in account aerodynamic heating, and let ri be the skin friction
totally ignoring it. Thus, ri corresponds to T* = 400'R, and re cor-
responds to T* = 829'R. If the quantities Vo and z are held constant,
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we see from Eq. (9-109) that

T* = 400 .* = 0.85

T* = 829 * 1.4 6

For constant pressure p* is inversely proportional to T*; thus
(_ 46- (400)A,

- 0.91

Actually, there is not much change in skin friction at M = 3 due to aero-
dynamic heating-a decrease of 9 per cent. If the viscosity increased
directly with temperature, then the decrease of p with temperature
increase would directly offset the tendency for the viscosity to increase
the skin friction. That the laminar skin friction decreases slightly as the
Mach number increases can-be ascribed-to the fact that the rate of change
of viscosity with absolute temperature is slightly less than linear. For
turbulent skin friction we will find a different state of affairs.

9-16. Turbulent Skin Friction

How aerodynamic heating changes the skin friction for a turbulent
boundary layer cannot be investigated along the same theoretical lines as
for a laminar boundary layer. The difference arises in the fact that,
whereas the physical processes in laminar boundary layers are well repre-
sented by the Navier-Stokes equations, the physical aspects of turbulent
boundary layers are not well understood. We must therefore check
engineering methoc's for calculating turbulent skin friction against experi-
ment since we have no -exact solutions. One of the first things to try
might -be the process that has been described in the previous section
for laminar skin friction. This Eckert has done and has checked the
results against experiment. His conclusion is that the general process for
calculating laminar skin friction applies to turbulent skin friction with
the sole change that the -recovery factor now is

r = (Pr*) (9-112)

The local skin friction for turbulent flow on the basis of the Schulz-
Grunow formula is

0.370
CF = (loglo Re*)2.584  (9-113)

and the average skin-friction coefficient is given by the relationship of
Prandtl-Schlichting

0.455
cF (loglo Re*) ' 68 (9-114)
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Illustrative Example

Recalculate the example of the preceding section for a turbulent bound-
ary layer.

As in the preceding example, let the trial value of T* be 800*R. The
recovery factor from Eq. (9-112) is

r = (Pr*) = (0.684) = 0.881

The value of the recovery temperature is from Eq. (9-96)

Ti = 400 + 0.881(1120 - 400)
= 1035°R

The recovery temperature of 1035°R for the turbulent layer compares
with 995°R for the laminar layer. The reference temperature now is

T* = 400 + 0.5(1035 - 400) + 0.22(0.881)(1120 - 400)
= 857°R

A further approximation will not be attempted.
To obtain CF we must obtain A* and p*. From Fig. 9-34, we have

-- =1.50

t* =1.50(3.58)10-7
= 5.37 X 10- 7 slug/(ft) (see)

From the gas law

500
P= 1718(857) = 3.39 X 10- 1 slug/ft

Re* - 2950(1.0)(3.39)10-4 = 1.86 X 101
5.37 X 10- 7

The local skin-friction coefficient by Eq. (9-113) is

0.370
(6.270)2.584

= 0.00322

The skin friction- by Eq. (9-109) is

= 0.00322(3.39 X 10- 4)(2.950) 2 X 106
2

= 4.75 lb/ft2

It is of interest to see how much the skin friction has been changed as a
result of aerodynamic heating. We therefore calculate the skin friction

I
If
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as if the reference temperature were 400*R. Then

0.85
= 0.85(3.58 X 10-1) = 3.04 X 10- 7 slug/(ft)(sec)

500
P* 1718(400) = 7.28 X 10- 1 slug/ft3

Re* 2950(1.0)(7.28 X 10- 4)
Re .010 = 7.05 X 106

3.04 X 10-7
0.370

(6.848)2.584 - 0.00257
0.00257(7.28 X 10-4)(2.95)2106
TW 2

= 8.10 lb/ft2

The ratio of skin friction with and without aerodynamic heating-is

Tc 4.75.. . .= 0.587
Ti 8.10

In this instance the skin friction of the turbulent layer has been reduced
over 40 per cent as the result of aerodynamic heating, compared with

only about 10 per cent for laminar
1.0 - flow under the same conditions.

-.8 The general effect of aerodynamic
- TR heating on skin friction is of interest.

0.6 - - - - The Mach number is the primary
variable, but the air temperature

0.4 - - and plate temperature also enter as
parameters. For a given air tem-

0.2- perature and a plate of fixed thermal
insulation, we can plot rT/ri against

0 1 2 3 45 6 Mo. With regard to the thermal

M O  insulation, let us take the case of
Fio. 9-35. Effect of Mach number on a perfectly insulated nonradiating
the local skin-friction coefficient of an plate. The variation in Tr/Tr is
insulated flat plate inair at room stag- shown versus M0 in Fig. 9-35 for
nation temperatures. ordinary air temperatures. The

very considerable decrease in skin friction -due to aerodynamic heating
for a turbulent boundary layer is noteworthy. This decrease is much
greater than for a laminar layer. Data confirming the general trend
shown by this curve are to be found in Chapman and Hester. 8

A 9-17. Other Variables Influencing Skin Friction

The methods of computing skin friction covered in the two previous
sections apply to flat plates with no pressure gradients and at uniform
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temperature with completely laminar or completely turbulent flow. In
practice, it is necessary to apply flat-plate results to wings and bodies, to
regions of nofiuniform pressure and temperature,.and to boundary layers
that are partially laminar and partially turbulent. Let us first consider
boundary layers that are neither totally laminar nor totally turbulent.

Determining the location of the transition zone is one of the obstacles
to successful prediction of skin friction of a missile under flight conditions.
A few observations can be made concerning transition for particular

Mach>,line \
+

P ,4c

(f/C) 5 5
6-

4- Letdsbs-idge sources
2-

-- -
-2-. . . . . I

-4- !I
- !5 //f. e-iine sinks

-6

FIG. 9-36. Pressure distribution due to thickness on double-wedge triangular wing
with subsonic ridge line.

bodies and wings, at least as observed in a particular wind tunnel.
Because these results illustrate principles, they are of interest here.
Some studies of transition have been made in connection with triangular
wings of double-wedge section using the liquid-film technique as described
by Vincenti5 9 One case is illustrated in Fig. 9-36 for the wing at zero
angle of attack. The question to be investigated is whether the thickness
pressure distribution has sharp rises which might induce transition. The
thickness pressure distribution for double-wedge wings can easily be con-
structed by adding the pressure distribution for a pair of leading-edge
sources to that for a pair of ridge-line sinks of the Jones type (See. 2-5).
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Two cases are differentiated; case 1 of Fig. 9-36 for subsonic ridge lines,
and case 2 for supersonic ridge lines. The total pressure distribution
I + II for subsonic ridge lines shows a rapid increase in pressure directly
behind the ridge line. This pressure rise was found 9 to induce transition
at the ridge line. For a supersonic ridge line the pressure rise is delayed
to the Mach lines associated with the ridge lines, and transition occurs
further back on the wing. The drag measurements confirmed greater
laminar flow area for case 2. Under conditions of angle of attack, the
lifting pressure distribution further complicates the problem.

Pressure distribution
on top of body\

II

Plane shock wave-' '"\ Mach helix

Fw-. 9-37. Mach waves and helices due to rectangular wing panels of wing-body
combination.

Wind-tunnel tests also show that positive pressure waves arising from
the leading edge of a wing-body juncture can cause transition on the body.
The boundary-layer conditions on the top and the bottom of a body in the
neighborhood of a rectangular wing centrally mounted on -the body-have
been reported by Pitts et al-.1° The general leading-edge wave pattern
for such a wing-body combination is shown in :Fig. 9-37. The combina-

i tion at zero angle of attack produces a positive wave intersecting the
i body in a pair of Mach helices. The pressure distribution at the-top of
! the body is shown to have a sharp pressure rise at the intersection of the
i helices which tends to induce transition. If the body angle of attack is
! increased, the pressure rise maybe replaced by the pressure decrease of a
; Prandtl-Meyer fan. In this event transition would be inhibited.

/]
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iHaving discussed several specific examples of how pressure distribution
fixes the transition zone, let us now consider the problem of calculating
the skin friction if the location of the transition zone is known and if the

zone is of small breadth. With reference to Fig. 9-38, the skin friction

up to the transition point T can be calculated on the basis of a laminar
boundary layer. However, beyond T the results for the purely turbulent
boundary layer cannot be applied directly, since the turbulent boundary
layer starts with finite rather than zero thickness. gime scheme is
required for joining the laminar results to the turbulent results. This
can be accomplished in several ways. It is assumed that the state of the
turbulent boundary layer right after transition is the same as if the bound-
ary layer had been purely turbulent from some virtual origin. The origin
is located on the basis that the total skin friction up to point T is the same

0 -Iaiuln

0,0' X

FiG. 9-38. E xample illustrating method of locating virtual origin of turbulent boundary
t layer for transition on flat plate; narrow transition zone.

for a purely tabulent boundary layer originating at 0' as for a purely
laminar boundary layer originating at 0. Such a condition is equivalent
to equal momentum thickness 0 of the laminar and turbulent boundary
layers at transition. The equivalence is easily seen from the equality
between-the average skin-friction coefficient 6, between 0 and x, and the
momentum thickness-at distance x.

20

Locating the virtual origin 0' requires only methods for calculating the
skin-friction coefficient for purely laminar flow and purely turbulent flow,
methods presented in the preceding two sections. The method of locat-

ing the virtual origin is illustrated graphically in Fig. 9-38. Curves of
x4. are constructed as functions of x, using the method for purely turbu-
lent and purely laminar boundary layers, and the distance is Ax deter-
mined as shown.
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We now consider the problem of the application of flat-plate skin fric-
tion to a nonplanar configuration such as a body of revolution. The
usual general method is used, namely, the laminar boundary-layer equa-
tions are solved for a flat plate and body of revolution and are compared.
This procedure has been applied by Mangler" to a cone, as well as by
Hantsche and Wendt." In the first case the cone acts in a pressure field
higher than free-stream pressure, so that the reference quantities just
outside the boundary layer are different from those of a flat plate in the
same stream. This difference is taken into account by a simple change
in reference quantities for the skin friction. Perhaps the essential differ-

ence between the cone and the flat
dS- plate is that the boundary layer is

Ir  spread out as it progresses downstream.
I Thinning the boundary layer tends to

- increase the velocity gradients through

it, and thereby to increase the skin
friction. The theoretical analyses show
that the local skin-friction coefficient
on a cone is 3 greater than the

Fzo. 9-39. Notation for evaluating local skin-friction coefficients on a flat
laminar skin friction on cone. plate for the same boundary-layer

length. Another way of stating the same result is that the local skin-fric-
tion coefficient for a cone corresponds to those for a flat plate at one-third
the Reynolds number. This result applies solely to laminar flow.

Illustrative Example

Compare the total laminar skin-friction drag of a, cone with that of a
flat plate of equal area and of a length equal to the slant height of the
cone for the same dynamic pressure outside the boundary layer. See
Fig. 9-39.

The local skin-friction coefficient for the cone is

3=(0.664)
Re;

where the local Reynolds number is

Re = VpOW
Mo

The drag of the cone-due to-skin friction is

Do = cos e fc cpqo dSc

with the differential area dSo

ri = 2rr ds
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The skin-friction drag of the cone, is

Do 4 0.664rL2 sin e cos e
qo = (VopoL/io)

The average skin-friction coefficient for the plate is twice the local value
for the Reynolds number based on length L.

2(0.664)
(VopoL/po),

As a result the total skin-friction drag for the plate Dp is

Dp 2(0.664)irL ' sin e
qo - (opoL/Ao)"

The ratio of cone skin-friction drag to "equivalent-plate" skin-friction
drag is

De 2
D-- P cos 6 = 1.15 cos e

In words, the total laminar skin-friction drag of a slender cone is 15 per
cent greater than the plate-of equal area and of length equal to the cone
slant height. It is clear that other "equivalent plates" can be set up
which will give different percentages.

To conclude our discussion of the application of flat-plate skin-friction
data to nonplanar bodies, let us consider the turbulent boundary layer
for cones and some results for circular cylinders. Van Driest" finds that
the local skin-friction coefficients on cones with turbulent boundary
layers correspond to those for a flat plate at half the local Reynolds
number, rather than one-third the local Reynolds number as for a laminar
layer. Eckert" concludes that the skin-friction coefficients for flat
plates can be applied directly to cylinders provided the ratio of boundary-
layer displacement thickness to cylinder radius does not exceed 0.01 or
0.02.

The influence of nonuniform surface temperature on the skin-friction
and heat transfer for laminar flow over a flat plate has been treated by
several authors, notably Chapman and Rubesin. 4

SYMBOLS

ao coefficient of log term in Eq. (9-18)
A aspect ratio of wing
AA aspect ratio of arrow wing
A., B. coefficients in Eq. (9-18)
A, aspect ratio of triangular wing
bo coefficient-in Eq, (9-18)
bn Fourier coefficients in Eq. (9-39)

-.

A
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e chord of two-dimensional airfoil
Cd section drag coefficient of two-dimensional airfoil
Cd, crossflow drag coefficient, Eq. (9-34)
Cdocom camber drag coefficient
CP skin-friction coefficient, Eq. (9-101)
CA chord-force coefficient in absence of leading-edge thrust

and skin friction
CA, value of CA at a = 0
Cc chord-force coefficient including leading-edge thrust and

skin friction
Co value of Cc ata = 0
CD drag coefficient
CD° minimum drag coefficient
CD, "induced" drag, CD - CD,
CD,/ACL2 drag-rise factor
(CD,/ACL 2)%,,
(CD,/ACL2)avo drag-rise factors due to vortex drag and wave drag
CL lift coefficient
CL° lift coefficient for minimum drag
CLout lift coefficient for maximum lift-drag ratio
ACL CL -CLO
CN normal-force coefficient
d maximum diameter of body cross section
D drag force
DB drag of body alone
DB(w) drag of body in presence of wing
D, crossflow drag force
Do drag of complete configuration
DP pressure drag
Dv viscous drag
Dw, drag of wing alone
Dw(B) drag of wing panels in presence of body
Dwave wave drag
B elliptic integral of second kind
fo, f2, f4, . . . Fourier coefficients in Eq. (9-21)
g quantity given by Eq. (9-40)
h trailing-edge thickness; base diameter
k drag-rise factor CD,/ACL2; also modulus of elliptic integral
K hypersonic similarity parameter, Mo divided by fineness

ratio
K* lo2/

I length of body
10 haracteristic streamwise length of configuration
1(0) length given by Eq. (9-73)
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2mean-squared length given by Eq. (9-70)
L lift force; also length of boundary-layer run
(L/D). maximum lift-drag ratio
LA lift of arrow wing
Lr lift of triangular wing
m p tan co for triangular wing
M0 free-stream Mach number
M/ reference Mach number used to correlate base-pressure

data
n outward normal to missile surface; also exponent specify-

ing body shape
p static pressure
PO free-stream static pressure
Pb base static pressure
p I reference pressure used to correlate base-pressure data
PB base-pressure coefficient, (pb - po)/qo
PC PP - PR
PF pressure coefficient for direct flow
Pi? pressure coefficient for reverse flow
qO free-stream dynamic pressure
r radial distance from body longitudinal axis
ro radius of base of bociy of revolution
S cross-sectional area of body
S,, S2, S3 surfaces of control area enclosing missile
S planform area subject to crossflow
Sm surface area of miss-.l3
S. projection on crossflow plane of body cross-sectional area

intercepted by oblique plane
SR reference area
t reciprocal of body fineness ratio; also tangent to missile

surface in the r direction; also thickness of airfoil
section

tm maximum thickness of airfoil section
T leading-edge thrust
Vo free-stream velocity
Vol. volume
W(a) complex potential of body
x, y, z principal missile axes, x streamwise, y positive to right,

z positive upward
X0 coordinate of intersection of oblique plane with x axis
X1 least value of xo for which oblique plane intersects wing

planform
XU greatest value of x0 for which oblique plane intersects

wing planform
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ze see Eq. (9-55)
z,, z distances of upper and lower airfoil surfaces, respectively,

measured from chord joining leading and trailing edges
2see Eq. (9-53)

y+iz
3g a coordinate of centroid of base of body
a angle of attack

(MoW - 1)1
a tangent to body surface in streamwise direction; bound-

ary-layer displacement thickness
0 polar angle in crossflow plane with 0 = 0 plane horizontal
0, angular parameters used in Eq. (9-38)

taper ratio of wing
Az sweep angle of wing leading edge
pleading-edge suction factor defined by Eq. (9-11)
YT value of p for triangular wing
V outward normal to base contour in crossflow plane

dummy variable of integration
otangent to body surface in crossflow plane of base
r skin friction; also wing thickness ratio
41 potential function

00 potential function for crossflow plane of base at zero angle
of attack

0. potential function for crossflow plane of base due to
angle of attack

( semiapex angle of triangular wing

Subscripts:

I lower surface of missile
u upper surface of missile
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CHAPTER 10

STABILITY DERIVATIVES

In the previous chapters of the book we have been concerned mainly
with the aerodynamics of component parts of the missile and particular
types of interference between components. In this chapter we take the
broad point of view and consider all forces and moments as functions of
all linear and angular velocities. The rates of change of any force or
moment coefficient with respect to linear or angular velocity components
of the missile or time derivatives thereof are called stability derivatives.
Stability derivatives are in reality partial derivatives; they can be of any
degree and include any number of the velocity components as independ-

-ent variables as well as time. These stability derivatives are the usual
aerodynamic inputs in dynamical analyses. Again, the feature that
probably distinguishes this chapter from previous ones is the general
approach of treating all stability derivatives rather than the specialized
approach of treating a few derivatives intensively that characterizes
earlier chapters.

Before embarking on general methods -of evaluating stability deriva-
tives, we must give careful consideration to notation and to reference
quantities. It is to be noted that the axis system to be used will repre-
sent-a departure from the previous usage in earlier chapters in accordance
with the discussion in See. 10-1. Section 10-2 is concerned with the
general nature of aerodynamic forces and the assumptions which lead to
the concept of a stability derivative. In Sees. 10-3 and 104 the powerful
Maple-Synge method is brought into play systematically to extract as
much information as possible on stability derivatives from the rotational
and mirror symmetries of the missile. The Bryson analysis is used in
Sec. 10-5 to show. ow most of the stability derivatives for certain classes
of slender missiles can be calculated by means of apparent mass coeffi-
cients, and the analysis is applied to a slender triangular wing in Sec.
10-6. General methods of evaluating apparent mass quantities using
complex variable theory are considered in See. 10-7, and a table of appar-
ent masses is compiled in Table 10-3. A number of illustrative examples
to explain the use of the table of apparent masses are given in Sees. 10-8
and 10-9. In Sec. 10-10 the variations with aspect ratio of the stability
derivatives of a triangular wing are discussed. The information con-

* - sidered up to this point deals largely with missiles having no empennage
349
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behind the wing. When the empennage lies behind the wing, the fore-
going methods and others can be used to determine the empennage con-
tribution to the stability derivatives. These matters are discussed in
Sec. 10-11 and are illustrated by a calculative example.

10-1. Reference Axes; Notation

Perhaps the first problem arising in the study of stability derivatives
is the choice of a system of reference axes. This choice is not an obvious
one since the systems used in stability analyses include body axes, wind
axes, stability axes, Eulerian axes, and pseudo-Eulerian axes, and no one
set of axes will meet all requirements. From the point of view of nota-
tional uniformity, it would be desirable to retain the same set of axes used
in the previous chapters. However, this procedure would lead to a sys-
tem with the positive longitudinal axis rearward and the positive vertical
axis upward in direct opposition to most of the foregoing systems of axes.
Also, for such an axis system, the usual positive directions of 9, "p, 0 and
p, q, r would not correspond to the positive right-hand rotations of the
system. For these and other reasons, it was decided to standardize the
reference axes for stability derivatives to a set of body axes coinciding in direc-
tion with the principal axes of inertia of the missile. (Any axis of sym-
metry will be a principal axis of inertia.) The positive directions are
taken as shown in Fig. 10-1. This choice of reference axes allows us to
invoke directly the symmetry properties of the missile in studying their
effects on the stability derivatives without an intermediate transforma-
tion from one system of axes to another. Once the stability derivatives
have been determined with respect to a standard system of body axes,
they can, however, be transferred at will to any other axis system. It
should be borne in mind that a system of axes fixed in the body also has
the advantage in dynamical analysis that the moments of inertia are not
functions of time.

With reference to Fig. 10-1, the reference axes X, Y, Z constitute a set
of axes fixed in the missile with its origin coinciding with the missile
center of gravity. The capital letters are used so that no confusion with
the axes x, y, z need arise. The components along X, Y, and Z of the
missile force, moment, translational velocity of the missile center of
gravity, and its angular displacement are given in Fig. 10-1 in symbol and
sign. The positive moment directions, angular velocities, and angular
displacements all correspond to positive rotations by the right-hand rule
for the positive axis directions. The translational velocity components
of the missile center of mass, u, v, and w, are not to be confused with the
components of the local fluid velocity along x, y, and z as used, for instance,
in Eq. (6-1).

The angular displacements 0, 4,, and 9 are to be given special attention.
They are to be differentiated strictly from the angles of attack, sideslip,
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and bank as defined in Sec. 1-4. The angles of attack and sideslip have a
kinematic definition based on the components of the free-stream velocity
along the body axes of the missile. The angular displacements 0, 1k, and
', on the other hand, are used to measure the missile attitude with respect
to a fixed set of axes, and in no way require motion of the missile relative
to the surrounding air for their definition. Let Xo, Yo, and Z0 be sta-
tionary axes fixed in space, and consider a missile moving with respect to
these fixed axes. Let us now describe one of many possible ways of
specifying the angular position of the missile at any particular instant of

Xy

\

Axes Moments about axis Angles Velocities

Force Posi-
oalong

Designation ag Desig- Sym- tive Desig- Sym- Lin- Angu-
bol axis nation bol direc- nation bol ear lar

tion

Longitudinal X X Roll L Y-+Z Roll 1P U p
Lateral Y Y Pitch M Z-*X Pitch 0 v Q
Normal Z Z Yaw N X-, Y Yaw k W r

FIG. 10-1. Standard conventions and symbols.

time. We shall do this by successively yawing, pitching, and rolling the
Xo, Yo, Zo axes until they coincide in direction with the axes X, Y, and Z
fixed in the missile as shown in Fig. 10-2. The angles of yaw, pitch, and
roll, 'p, 0, and p, then describe uniquely the missile attitude. First, yaw
the missile by an angular displacement if around OZo so that Xo goes into
X 1 and Yo into Y1. Ther. pitch the missile by an angle 0 about the OY
axis so that X1 moves to X 2 and Zo to Z 2. Finally, roll the missile by
angle p around the OX 2 axis (or OX axis) so that the point Y2 moves to
Y and Z 2 to Z. It is to be noted that the angles ,, 0, and 9 are not about
mutually perpendicular axes. The operations of yaw, pitch, and roll are
always to be performed in that order since angular displacements do not
follow the ordinary law of vector addition but, in fact, follow a noncom-



352 MISSILE AERODYNAMICS

""0

0

0 z, (a) z2\ z1  (b)

xx 2,x X 1

\ 0/
Y2 Y1 ,Y2

Y i ly

// zzI /7

z,,z, (d)

FiG. 10-2. System of angular displacements. (a) Yaw about OZo by VP; (b) pitch

about OYI by 0; (c) roll about OX 2 by 4; (d) composite diagram.

mutative law. Under the foregoing system the direction cosines of the

final missile body axes X, Y, and Z to the fixed axes Xo, Yo, and Zo are

given by the Table 10-1. The angles of yaw, pitch, and roll are thus a

TAB 10-1i. DIREcTIoN COSINES OF BODY Ax~s

Fixed

axes OX0  Oyo Ooz

Body
axes

OX cos O cos tP cos 0 sin ip - sin 0

- Cos P sin , + cos V cos ' + sin ,P Cos 0
01 sin p sin 0 cos i, sin t, sin 0 sin s o

sinP sinP + -sin ,cos ' +
OZ cos ( sin 0 cosP cos p sin 0 sin ICosPCosO

system of three angular displacements that specify the angular orienta-

tion of any missile in space with reference to a fixed set of axes. As such,

these angles are pure geometric quantities independent of the kinematics

of the missile. For small values of 0, ', and v, these quantities can be
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considered as taken about the missile body axes. Under these circum-
stances the direction cosines become those shown in Table 10-2.

TAu3LE 10-2. DIRECTION COSINES OF BODY AXES FOr SMALL
ANGULAR DISPLACEMENTS

Fixed

axes OX0  OYo Oo1
Body
axes

ox 1 # -o

OY - 1 p

Oz 8 - 1

10-2. General Nature of Aerodynamic Forces; Stability Derivatives

The forces and moments acting on a missile result mainly from the
missile propulsive system, gravitational attraction, and from the reaction
of the air on the missile as a result of its motion. (This is not to say that
other types of forces cannot be involved.) In this chapter we are con-
cerned only with the reaction of the air on the missile by virtue of its
motion. Consider a missile which has been flying for some time in air
which is at rest at great distances from the missile. The forces on the
missile at any particular instant depend in general on the entire history
of its motion in the air. This result is generally true for subsonic veloc-
ities since the missile wake can be "felt" by the missile from all points in
the wake at all times. At supersonic speeds, the pressure disturbances
from any point are confined to its downstream Mach cone. As a conse-
quence, in steady supersonic flow only a small length of the wake can
influence the missile. The functional dependence of any particular force
or moment on the complete dynamical history of the missile can be written

F = f[u(t), v(t), w(t), p(t), q(t), r(t)] (10-1)

Obviously the dependence of the force on the complete history of the
motion is too complicated a relationship to be of much use in analysis.
We must therefore simplify the relationship on the basis of some plausible
assumption. By suitably restricting the types of missile motion, we can
accomplish such a simplification. The forces on a missile resulting from
a sudden change in angle of attack would depend on the past history of
the motion for a definite period after the sudden change. The forces
acting on a missile which is undergoing-sinusoidal oscillations of high fre-
quency will certainly depend on more than the instantaneous dynamical
state of the missile. The aerodynamic forces associated with boundary-
layer separation such as hysteresis in lift near maximum lift certainly
depend on more thau just-the instantaneous values of u, v, w, p, q, and r.

It
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A missile becoming rapidly hot as a result of aerodynamic heating
develops forces which depend on the history of its motion. However,
for missile motions which take place sufficiently slowly and for which
effects of heating and viscosity are not significant, it is reasonable to
assume that the missile forces and moments depend primarily on the
instantaneous dynamical state specified by the linear and angular velocity
components. (If we were also to include the linear and angular accelera-
tion components, we could also take into account in part the immediate
past history of the missile to the degree of approximation thatt, by ?by A,
and P are independent variables in Taylor series for the forces and
moments.) Let us formulate the consequences of the simplifying assump-
tion mathematically. Let X, Y, Z, L, M, N be the components of the
missile force and moment corresponding to a dynamical state described
by u, v, w, p, q, and r. Under the assumption that the force and moment
components depend only on the instantaneous values of u, v, WY p, q,
and r, we can write more specifically than Eq. (10-1) that

X x(uv,w,P,q,r) (10-2)

with similar equations for the other components. If further we-assume
that the function given in Eq. (10-2) is analytic-for instance, there are
no hysteresis effects that make it double-valued-we can then expand it
in a Taylor series about some point uo,vo,wo,po,qo,ro. Let us expand
about the point (0,0,0,0,0,0) so that

X = I xiktm(uo,vo,wo,po,qo,ro)uviwpI q (0r3
-jklmn -, 1, 2 .... (10-3)

U0 =VO- WO -- PO-- qo = ro-- 0

where xijkim, is in general a function which depends on uo,vo,wo,po,qo,ro but
which is a constant in the present case. By the theory of Taylor expan-
sions, it is known that the function xiikz,, is related to the partial deriva-
tive OxO/au:OviOwOpq-Orn where g = i + j + k + I + m + n. This
partial derivative is called a stability derivative with the possible applica-
tion of a multiplicative constant depending on the exact definition of the
stability derivative. It is thus clear why the stability derivative depends
on the particular values of po, qo, ro, uo, vo, and Wo for its value. Let us
write out just the constant-and first-degree terms of the general expansion
of Eq. (10-3) about the point uo,vo,wo,Po,qo, and ro.

X = xoooooo(uo,vo,wo,po,qoro) + xooooo(U - uo) + xooooo(v - Vo)
+ xooooo(W - wo) + xooolo(p - po) + xooooio(q - qo)

+ xooooo r - to) (10-4)ax ax ly Ox Cx Ox axX =Xo + Wu 5u + ' 3 + - 8w, + .Spa + -7 Sq + T7 6r (10-5)

TV q r
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We have six derivatives in X including terms of first degree in the general
expansion, and we obtain six more each for Y, Z, L, M, and N. Of these
36 derivatives, those due to the components of the linear velocity, u, v,
and w, are termed resistance derivatives.

X, Y. Z, L, M, N,
X. Y, Z, L, M, Nw

The 18 derivatives depending on components of the angular velocity are
termed rotary derivatives.

Xp Y ZPL..Mr Nv
Xq Yq Zq L, Mq N0

X, Y, Z, L, M, N,

If we had included the independent variables f, 0, ib, 73, , and f in the
general expansion given by Eq. (10-3), we would have obtained 36 more
acceleration derivatives including terms of first degree. Of these accelera-
tion derivatives, experience has shown that certain ones can be important.
The ones with which we will be concerned include

Z6, M' , Y4, Ni

By including terms of degree higher than the first, higher-order derivatives
without limit can be generated. Certain derivatives of this kind with
which we will be concerned include

L.p, L.,, Lov, N.p

Again the assumptions underlying stability derivatives as they are used
in practice are that the missile forces and moments depend only on the
instantaneous values of u, v, W, p, q, r and possible tO and b, and that the
functional relationship between forces (and moments) and these independ-
ent variables is a Taylor series. It must also be borne in mind that the
stability derivative is a function which depends on particular values of
uo, v0, wo, po, qo, r0, tbo, and bo for its value. Luckily, however, the func-
tional dependence is usually simple.

The stability derivatives as defined above are dimensional, and some
consistent scheme of making them nondimensional must now be intro-
duced. A reference area is needed as well as a reference length. It is
frequent practice to use different reference lengths for different purposes.
For instance, pitching-moment coefficient is usually based on the wing
mean aerodynamic chord whereas rolling-moment coefficient is usually
based on the wing span. For the purpose of general treatments, it is
desirable -to use only one reference length V and one reference area SR.
Conversion to other reference quantities can-readily be made for specific
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cases. If qo is the free-stream dynamic pressure, the force coefficients
are taken to be

XYZ
C x = CY = - Cz = -- (1-6)

o qoJSR (10-6
and the moment coefficients are taken to be

M N L

C.. = qSR C = C1 = L (10-7)

The velocity components u, v, and w are made nondimepio; Al by division
by Vo, yielding u/Vo and the angles of attack and -ides:p.

u a= (10-8)

The approximations to the angles of attack and sideslip a and # as given
by Eq. (10-8) are valid only if a and 0 are small compared to unity, as dis-
cussed in See. 1-4, but this range will be wide enough for the purposes of
this chapter, which is based almost exclusively on linear theory. The

u lar velocities are made nondimensional as follows:

pX qX rX

The use of the factor 2 makes pX/2Vo the helix angle of the wing tips in
case X is the wing span. The accelerations may also be nondimensional-
ized as follows:

2O2 2v 0 
2 V0  V 2 To 2V02 2V02 2V0 2

(The use of the factor 2 in the acceleration derivatives is convenient
because combinations such as Mq + M& occur in many problems.)

We have completely nondimensionalized the force, moments, velocities,
and accelerations. Let us now specify the notation for the resistance
stability derivatives in terms of the nondimensional component parts.

x= CX OCx OCx
CY, = o(u/Vo) cxy = ) a cx = a#

Cz. = ocz/7o) = Z Cz = -C

a(u/Vo) a#
C1. oCt . OCZ c

O (u/Vo) = O CIO = -g

.. = O(U/Vo) C.. = 3 C0 = --

= OC C =a C.0 OC.
(u/Vo) - a=
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The notation used for the rotary stability derivatives is

OCx OCx oax
- O(pX/2Vo) CXq =(qX/2Vo) r O(rX/2Vo)
C 0Ct OCt OCy

CY -o(pX/2Vo) Cyq= (qX/2Vo) b(rX/2Vo)

C z OCZ C aCz Cz = Czaz (pX/2Vo) zq = (q,\/2Vo) 8z (rX/2Vo)
OC, ac O ct C1, = actS=O(pX/2Vo) Zq =(qX/2Vo) O(rA/2Vo)

r - Co aCC = C.=(pX/2Vo) q O(qX/2Vo) O(rX/2Vo)

_ OC C OC. C. = OC.
- o(pX/2Vo) o(qX/2Vo) o(rX/2Vo)

The notation used for the acceleration derivatives is
_ Ocx C = C = OCx

CX, 0(&-A/2 Vo) 0(i3X/2 7 o) O(PX2/2Vo)
CYA c C OCy C. = OC 2

0(6X/2Vo) c= o(4X/2V) Y O(PX/2Vo
oCz oCz C2.= OCz

0(6X/2Vo) Cz1  o( X/2Vo) 0(=6X/2Vo)

OCC OC" C" C
O(&X/2Vo) C O(X/2Vo) O(pX2/2V 2)

O(&?..2V0) 4 (X/2Vo) /2P

-n OCn ac. 0Cp OC.
O(6A12VO) O( X/2Vo) O(OX2/2Vo)

with 4 and P derivatives similar.
The higher-order derivatives are specified in the same manner as the

derivatives of first degree:
Oce 02Cr (10-9)

O e a( 2/2Vo2)

We will sometimes call the resistance derivatives, which depend on the
translational velocity components u, v, and w, together with the rotary
derivatives, which depend on the angular velocity components p, q, and r,
jointly the velocity stability derivatives in contrast to the acceleration stabil-
ity derivatives.

A number of the derivatives have special importance or special names:

Static stability:

* C. static longitudinal stability
C.f directional stability; weathercock stability
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Damping derivatives:

Cmq, Cm damping in pitch
C,,,., Cn damping in yaw
CIv damping in roll

Dihedral effect:

Tho significance of Cm, and C,,, is that they are the "spring constants" for
pitching and yawing motions and largely determine the natural fre-
quencies of the modes. For stability, C,, is negative, and C,, is positive.
The damping derivatives act effectively as the "damper" in a spring-
mass-damper system and control the rate at which oscillations are
damped. The reasons for two terms for damping in -itch and yaw are
discussed in Sec. 10-10. The dihedral effect is a measure of the rolling
moment developed by the missile as a result of sideslip. If the rolling
moment is positive (right wing down) for negative sideslip, the dihedral
effect is "stable," and the missile rolls into the turn.

10-3. Properties of Stability Derivatives Resulting from Missile
Symmetries; Maple-Synge Analysis for Cruciform Missiles

Before we concern ourselves with methods for evaluating stability
derivatives, it is desirable to deduce what general information we can
concerning stability derivatives from the symmetry properties of the
missile. However, the reader who is interested at this time only in final
results can go to See. 10-5, in which the apparent-mass method of evalu-
ating stability derivatives is treated. The elegant Maple-Synge analy-
sis25 systematically deduces the consequences of the several types of
symmetry possessed by missiles, and it is the basis of this section. As
pointed out in the previous section, the stability derivatives depend for
their values on the values of u, v, w, p, q, and r. We will consider several
important cases in this connection.

Casel: Roll and pitch u 0 w60 p0 v=q=r =0
Case2: Pitch and no roll uO0 wO0 p=0 v=q=r =0
Case 3: Roll and no pitch uO0 w=0 p00 v=q=r=0
Case 4: No roll and no pitch uO0 w=0 p=0 v=q=r=0

Two distinct types of symmetry are important in so far as stability
derivatives are concerned: rotational symmetry and mirror symmetry.
The rotational symmetry has been specified in terms of covering opera.-
tions. If by rotation through a particular angle about its longitudinal
axis a missile can be brought from one orientation to another indistin-
guishable from the first, a covering operation is said to have been per-
formed. If by successive rotations in the amount of 2w/n radians the
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missile undergoes a succession of covering operations, it is said by Maple
and Synge to possess n-gonal symmetry. Mirror symmetry, on the other
hand, is intuitively apparent. When
we say a missile possesses a vertical
plane of symmetry, we mean that it
possesses mirror symmetry from one

side of the plane to the other; that
is, the missile part to the left of the
plane is the mirror image of the
missile part to the right of the plane.
Missiles frequently possess several n

planes of mirror symmetry. In Fig.
10-3 missiles possessing 1-, 2-, 3-, (a)
and 4-gonal symmetry but no
mirror symmetry are contrasted with
missiles possessing 1-, 2-, 3-, and --- -- -.

4-gonal symmetry and also mirror n-11ri-2

symmetry. We shall call a missile , --- Plane of mirror
having three planes of mirror sym- symmetry

metry and 3-gonal symmetry a tin-
form missile and one with four planes ... ..
of mirror symmetry and 4-gonal n-3 n

symmetry a cruciform missile. The
twvo symmetry properties together (b)
yield general information on the Fro. 10-3. Examples of missile sym-

metries. (a) N-gonal symmetry, noanalytical form of stability deriva- mirror symmetry; (b) N-gonal and
tives, and also specify which deriva- mirror symmetries.
tives are necessarily zero.

In the analysis which follows it is convenient to specify certain complex
combinations of quantities as follows:

F =Z + iY T =N + iMF=Z-iY T =N-iM
v -w + iv = +iq (10-10)
=w-iv co=r-iq

The symbols are those specified by Fig. 10-1. The first assumption in
the analysis is one concerning the general nature of the aerodynamic
forces. In accordance with the preceding section and within its limita-
tions we assume that the aerodynamic forces and moments of the missile
depend only on u, v, w, p, q, and r. We further assume that these forces
and moments are given by a Taylor series in v, w, q, and r with the coeffi-
cients functions depending on u and p. Since the-coefficients are func-
tions of u and p, we have lost no generality in comparison with Eq. (10-3).
Also any qqdratio or cubic dependence of forces and moments on v. or p
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,an be considered without involving terms of second and third degree in
the general expansion. In terms of the complex quantities we thus have

F = Z + iY -- fijk(u,p)vipwk-c

iJkl

T = N + tlijjk(uip)v(U

jiki1 (lO-11

The coefficients f~ikz, ijkl, xiikt, 4 jk, are complex-valued functions of u and p.
In Appendix A at the end of the chapter, the consequences of rotational
and mirror symmetry are systematically deduced in so far as the coeffi-
cients in Eq. (10-11) are concerned. We will concern ourselves with the
results here, and refer the interested reader to Appendix A at the end of
the chapter for the mathematical details.

From Eqs. (10A-24) and (10A-25) the general terms of the series for the
drag and rolling moment are

X -- x() + x'd,,j 1 (q,2 I- r2) + 2xz(,I(wr + qv) + 2xAg)1(wq - vr)
+-100(.2 + v2) + terms of fourth degree (10-12)

L Oo)oo + I) 1(q2 + r2) + 2, 1(wr + qv) + 2, 1 (qw - vr)
+110oo0(W2 + v2) + terms of fourth degree (10-13)

Here the coefficients are functions of u and p. The superscript (E)
denotes that the function is even in p and the superscript (0) denotes an
odd function in p. Similarly, we have results for the forces Y and Z.

Z = fS1or - f ")q + ff'B0 w - ff?0&v(114y z 0t) ., o"'(10-14)
=1f 0or + f~oloq + ffw_ + o

The expansions for N and M are analogous to those for Z and Y, respec-
tively, with the superscripts (B) and (0) interchanged.

N = t' 0 r - t)°0iq + t o9 ow -(

M = t00or + t-o-q + tF~w + tjooV (10-15)
The expansions for Y, Z, M, and N contain no terms of second degree.

Equations (10-12) to (10-15) inclusive give the Maple-Synge expan-
sions for all six lorces-and moments in powers of w, v, q, and r with coeffi-
cients which are functions of u and p. The stability derivatives are
formed by differentiating the forces and moments with respect to u, v, w,
p, q, and r. When the roll rate is zero, the following relationships help to
reduce the number of stability derivatives which are nonzero.

x"T = = flf = t,° =0 if p = 0
8x,= 2 1 ,B) O 0 (10-16)

FP l "-p - a pk
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The derivatives which exist for the four cases are summarized in Fig.
10-4.

It is interesting to determine the number of independent stability
derivatives for each of the four cases listed in Fig. 10-4. However,

X Y Z L M N X Y Z L M N

U u 0 o0 0
V0 0 j 0 v 00o1

w w 0 0 0

P P 0 0 0

q q 0 0 0

(a) (b)

XYZL MN XYZ LMN

v 00 0v 0 0 0 0

wO 0 wOO 0 0

P 0 0 0P 0 0 0 0 0

q 0 0 q 0 0 0 0if0z.zz 00o

(c) (d)
F o. 10-4. Zero stability derivatives for cruciform and triform missiles. (a) Case 1:u 00, w 00, p 0 0,v = q= r = 0; (b) case 2: u 00, w 00, p = 0, v q --r =0;
(c) case 3:u-,w =0, p6,v =q =r =0; (d) case 4:udO,w =0,p =0,
v =q =r=0.

before doing so, let us note that certain equalities prevail among the
derivatives by virtue of Eqs. (10-14) and (10-15), namely,

Zr= Y2 Z= -Y, Z.= Y. ZI= Y. (10-17)
N, = Mg Nq = - M, N = M, N =" -M

When these equalities are taken into consideration, it is clear that, of
the 34 nonzero derivatives, for case 1, 26 are independent; for- case 2,
13 are independent; for case 3, 12; and, for case 4, only 6. Since the total
number of derivatives without considerations of symmetry is 36, a large
reduction in the number has been made by means of the Maple-Synge
analysis. While the analysis establishes which derivatives are zero by
virtue of symmetry, other derivatives may be zero by virtue of special
aerodynamic reasons. We will consider methods for evaluating the
stability derivatives later, but will first carry out the Maple-Synge
analysis for missiles with 2- and 3-gonal symmetry and mirror symmetry.

-- ----
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10-4. Maple-Synge Analysis for Triform Missiles and Other Missiles

It is interesting to examine the results of the Maple-Synge analysis for
missiles with 3-gonal and 2-gonal symmetry-as well as mirror symmetry.
The actual analyses for these two cases are carried out in Appendix B at
the end of the chapter. Only the results of the analyses will be discussed

'in this section.
The triform missile presents an interesting case in comparison with a

cruciform missile. The expansions for Y, Z, M, and NT given by Eqs.
(10B-3) to (10B-6), inclusive, are to be compared with Eqs. (10-14) and

X Y Z L MN X Y Z LMN
U u 0 0 0

V V 0 0 0

w w 0 0 0

P P 0 0 0

q q- 0 0 0

r r0 0 0

(a) (b)

X Y Z L M N X Y Z L M N
S 0 0 00 U o oloo 00

v 0 0 v 0 0 0 0

w 0 0 w 0 0 0 0

P 0 0 0 0 P 0 0 0 0 0

q 0 0 q 0 0 0 0

r0 0 r 000

(C) (d)
FIG. 10-5. Zero stability derivatives for missile with 2-gonal and mirror symmetries.
(a) Case 1: u 0 0, w 0, pw0, v=q=r=0; (b) case 2: u 5 0, w 00, p =0,
v = q r =0; (c) case 3: u r0 0, w = 0, p # 0, v = q = r = 0; (d) case 4: u 0 0,
w =0, p 0, v =q = r =0.

(10-15), which give the corresponding quantities for a cruciform missile.
It turns out that the first-degree terms in-each case are identical in form,
but the triform missile has many terms of second degree where the cruci-
form missile has none. For the triform missile the X and L forces are
given by Eqs. (10B-9) and (10B-10). These results compared with those
for cruciform missiles given by Eqs, (10-12) and (10-13) reveal that the
forms of the equation are identical for the two cases through terms of
second degree.

With the series for the forces and moments explicitly determined, we
can now obtain the stability derivatives by direct differentiation with
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respect to u, v, w, p, q, and r. The differentiations will not be carried out.
However, the derivatives which are not identically zero from symmetry
conditions are precisely those listed in Fig. 104 for cruciform missiles.
It also turns out that the eight equalities between stability derivatives
for a cruciform missile given by Eq. (10-17) are also true for cases 3 and 4
for a triform missile. It is to be noted that, even though the triform
missile has many of the stability derivative properties of a cruciform
missile, the numerical values of its stability derivatives are generally
different from those of a cruciform missile.

The general Maple-Synge expansions for Y, Z, M, N, X, and L are
derived in Appendix B at the end of the chapter for a missile with 2-gonal
symmetry and mirror symmetry. The stability derivatives based on the
results are summarized in Fig. 10-5. It is interesting to compare the
derivatives which are zero for the present case with those which are zero
for the cruciform-triform case, as listed in Fig. 104. For case 1, X. and
L, are not zero in the present circumstances; and, for case 2, L, is not zero.
For cases 3 and 4, the derivatives which are zero by virtue of symmetry
are identical for missiles with 2-gonal and mirror symmetry, for triform
missiles, and for cruciform missiles.

All derivatives listed in cases 1 and 2 are not independent. In fact,
the following equalities hold for these cases:

Z"=W - (Z) Np=w (N,)
(10-18)

Y, W a (y.) M" = w1- (MW)

TP au

For case 1 the additional equalities hold:

Z,= T(Z,) N. = W 1W
) ftN (10-19)

Y.=Wa(Y) MP = w! (M-)

10-5. General Expression for Stability Derivatives in Terms of Inertia
Coefficients; Method of Bryson

Hitherto we have been concerned only with the general properties of
stability derivatives derivable from the symmetry properties of the
missile. Now we will be concerned with methods for actual evaluation of
the derivatives. A number of approaches for evaluating the derivatives
are possible for slender configurations. There is the direct approach
used by Nonweilert of determining the potential, calculating the pressure
distribution by Bernoulli's equation, and integrating the pressure dis-
tribution to obtain the force or moment concerned. if the square terms
in Bernoulli's equation are included, the integrations can become very
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complicated in many cases, i.e., Sec. 5-5. Also, special account must be
taken of leading-edge suction. A second method used by Ward and
extended by Sacks2 considers the gross forces and moments evaluated
from a consideration of the pressures acting on the control surface enclos-
ing the missile, together with the momentum flux through the surface.
This second method makes extensive use of residue theory and conformal
mapping, giving the stability derivatives in terms of the coefficients of
the Laurent series for transforming the missile cross sections into a circle.
A third approach which will be used here is the apparent-mass method
used by Bryson.' This method is a direct one if the apparent-mass
coefficients of the missile cross section are known. It automatically
takes into account effects of leading-edge suction.

FiG. 10-6. Missile type readily amenable to analysis by apparent-mass methods.

Before embarking on the method of apparent masses or method of inertial
coefficients as we will variously term it, let us consider the general class of
configurations to which the method applies. Generally speaking, the
wing wake must not influence the empennage, or the tail wake must not
influence the wing for a canard missile. Missiles of the type shown in
Fig. 10-6 are readily handled by apparent-mass methods. The influence
of wing wake on the empennage is treated in Chap. 7 and in Sec. 10-11.
It is probably important to realize that the method of apparent masses
gives stability derivatives, not gross forces or moments. If the force or
moment in question is zero when v, w, p, q, or r is zero, then the derivative
with respect to any one of these independent variables also automatically
gives the forces or moment for nonzero values of these variables. How-
ever, this would not be true, for instance, for lift or pitching moment
associated with wing camber or wing twist. In such cases it is probably
better to calculate the force or moment acting when v, w, p, q, or r is zero
by special methods rather than the apparent-mass methods.

Bryson's method of apparent masses is based on certain results of
Lamb4 which will be quoted here without proof. Consider a missile
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moving through an infinite expanse of fluid stationary at infinity, and let
the system of body axes X, Y, Z have its origin fixed at the center of
gravity of the missile as shown in Fig. 10-7. Consider a crossflow plane
fixed in the fluid perpendicular to the X axis. The potential in this plane
depends (except for a function of X, Sec. 3-4, which cannot influence the
stability derivatives considered herein) only on the normal velocities of
the missile cross section in the plane at the instant under consideration.
Let t, q, and r be parallel to X, Y, and Z, and let v, and V2 be the linear
velocities of the missile cross section in the plane along the 7 and axes,
respectively. Also designate the angular velocity of the missile cross

Crossflow plane fixedin fluid

t

FiG. 10-7. Coordinate systems for apparent-mass analysis.

section about the axis as p. If we designate the potentials due to unit
values of vi, v2, and p as 01, 0, and 03, respectively, we have for the com-
plete potential

= VI 1 + V24A + 4 3 (10-20)

(We are neglecting any influence of the log term proportional to the rate
of change of missile cross-sectional area. Its influence on the stability
derivatives is nil for a missile with a horizontal or vertical plane of sym-
metry except in so far as the drag is concerned.) The kinetic energy of
the fluid per unit length along can be expressed by the well-known
integral5

T = Y p -ds

where the contour C is the periphery of the missile cross section in the
crossflow plane, and n is the outward normal. The kinetic energy can
be expressed with the help of Eq. (10-20) as
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01 # ) ) 03 ds + vlv± 4''ds
c 0O O

vi(Xp) r o4)i v (v2 0r
+V2

2  2O 2 ds + 0.03d
+( p) n 0 On

+v ) 00 4)3 'ds + v ~ 0 )3~ 2 ds
+2  

03 a0 ds (10-21)

The reference length X has been introduced together with a reference area
SR. The nine integrals are called the inertia coefficients of the cross sec-
tion, and are given the notation Aij in accordance with the following
array:

All A 12 A 13

A 21 A 22 A 23
Aal A3 2 A 33

1 ,5,01 d-90¢ ds 1-- d€.

1 02 l4 01 ds 1 09 02ds 1 - 2 043ds (10-22)

± 063 a¢ds iL 0i O) O- 3 3ds

Ts-ftC On XSR ~! On X2SR Onct~~d

It is of interest to note a reciprocal relationship for inertial coefficients.
This relationship is based on the particular form of Green's 6 theorem
valid for potential functions €1, 02, and 03 which follows:

O 0 2' d = 0'j1's-n (10-23)
Thus, we have

Aij = A (10-24)

and the kinetic energy of the fluid per unit length becomes

T = Y pSR[vl2An j+ v2
2A 22 + (Xp) 2A33 + 2v1V2A 12 + 2v1(Xp)Al 3

+ 2V2(Xp)A 231 (10-25)
It is convenient at this point to relate the velocities vi and v2 to linear and
angular velocities v, w, q, and r, but with the substitution of a and 0 as
independent variables for v and w. Thus, we obtain

vi = v + rX = 0Vo + rX (10-26)

v 2 = V - qX = aVo - 0X

The power of the method now is that the forces and moments Y, Z, L, M,
and N can be simply determined by differentiation of the kinetic energy
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given by Eq. (10-25). (We are not including the thrust force X, because

the method of apparent masses is not suited to its determination,) The

formulas for obtaining the force dY/dX and dZ/dX per unit axial dis-

tance and the rolling moment dL/dX per unit axial distance are taken

from Lamb,4 and are presented in their particular form for the present

application without proof.

dY d /,N +,. aT

dZ d ( a ,7)
dX it TK2) aVI
d-L d /0T\ + a2 T aT

The differentiation is in the fixed crossflow plane, and the total derivative

d/dt must reflect the changing coordinate X, of the crossflow plane with

time. Thus
d O dXa + 0 V L (10-28)

dt t dt ax at ax

If we carry out the differentiations indicated by Eq. (10-27), we obtain

the forces and rolling moment per unit length.

dY -pSR[Aui + A1 2b2 + A13(Xp5)]
TX_ + PSRVO -L [Av 1 -+ A 12v2 + A 13(Xp)]

+ pSRp[Ai2v1 + A 22v2 + A23(Xp)] (10-29)
dZ
d -pSp.[Ai2b, + A 22i'2 + A 23 (XP5)]

+ pSRVo [A12v1 + A22v2 + A23(Xp)]

- piSRp[Allvl + A 12v2 + A, 3(Xp)] (10-30)

. = -pSRX[Ajab1 + A 2 i) + A33(Xp)]dX

+ XPSRVO 2 [A, 3v, + A23V2 + A33(Xp)]

+ pSR v2[Allv + A12V2 + AlA(Xp)]
- pSRvI[Ajvj + A 22v2 + A 23(Xp)] (10-31)

Since the axial distributions of sideforce Y, normal force -Z, and roll-

ing moment L are known-along the body, direct integrations from missile

base to missile apex will yield the Y, Z, L, and M and N. Let us first put

Eqs. (10-29), (10-30), and (10-31) into appropriate nondimensional form

by dividing all forces by pVo2Sz/2 and all moments by pVo2SRX/ 2 , where

Sn and X are the reference area and reference length, respectively. We

also introduce the parameters a, 0, Xp/2Vo, Xq/2Vo, and Xr/2V0 as the

independent variables, By-these means-we obtain
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dCy No 41 A\ [(X2
d(X/X) - [\2Vo) \2Vo2X 2V~i

+ A12[(-+ a ()-(:)]+ AnX2 )

+2d(X/ ll102X)V) X

+ A12 a( - 2 / ox \ ) 2A(13 2)] +

+~ 42A 12( )} (10-33)
d(2/V o)T

+Aa(~+a 22 2 1 Mx\ J+A3 p(1-2)

+2d(X 2/x) l[2(j 2-/Xj

+ A2-2(o)~ + Y 2

K -2Vo'/ X )X] V

+2 A2 + 2A(

+ A2 -2 N \x) 2 23 2 (~) (10-34
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We will now obtain the specific formulas for the derivatives of Cy, Cz,
0C, C., and C. by a, P, pX/'2Vo, Xq/2Vo, and rX/2Vo-25 detivatives in all.
Considering first the derivatives of cy, we obtain from Eq. (10-32)

d~ya 4Axo'I2 12A+ 2  +4 A22'
d(X/X) = TVPJ 1  d(X/X ) 2o) A
dCy~ AI A+ dA ii + 4 ( Xp \ 1

d(X/X) - A1 , \2T- 02 + 2 d(X/X 4,\ A" 2

d(X/X) d(X/X) + 4AX k + 9

dC~~ ~ dA1  x / (10-35)
+ 4A22 a- 2 -+ -16A 23

_ _ _d x1 / )

[A~ = 12 4-18 iiV- 2
d(X/X) d(X/X) A 7X - 8 X 2

d(X/X)0 (A+8 V X A 12
d(X/X) - -X-/X X

To obtain the gross forces and moments, it is necessary to integrate from
the missile base at Xb on the negative X axis (Fig. 10-7) to X, at the
missile apex. We denote the value of the inertial coefficients at the missile
base by a bar as in All, A 22, etc. We furthermore indicate X integrals of
the inertial coefficients Aq, as follows:

B ij Aj, d (X)

J (X/h)b

I

In terms of At,, Be;, and Cj1 the integration of Eq. (10-35) yields

Cy, ( = - 4( B12 - 2.,1 + 4 B

.XVo\ (XP
CY 4(TV:2) Bil211  , 1

= -4A, 3 + 4CB 2 2 + 40B12 + 16 (-) B23

\-,Nr (10-37)

-8(()-8C _ c22 + 8 (v2-) C12

( r,. 4,i, (-) + 8 ( N

X I2o
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In similar fashion the derivatives for Cz and C, can be obtained, and only
the results are quoted here.

CZ. = -4 (x-A2 B 22 - 2A 22 - 4 B12

Cz = -4(2o) B12 - 2j 12 - 4 Bil

Cz, = -4A 23 - 4aB12 - 4B 11 - 16 (T) B13 (10-38)

+ 8( x 012 - 8 (Xr

+ 4( )B -S 012o) C"+ 4 ( o)(11 -02)

C0 = -4 (V2) B23 - 2A23 + 2a(B2 - B2 2) - B2
((21 - 2)8(-

+16T AI ) D?8)' o(D -,

0ta) -f) 2-'3 1 1 - C21

+z 4A2 )-r Bx13 ((1-02 - 8 (C1) +13

CIO. -4AVXB3  - D + 4a(Ou - B22) - 49B11 8(~ 23

4 V2-8o) 2 - ) (CH - 22) - 16 ( -2) C12

The pitching-moment and yawing-moment derivatives are obtained by

taking the moment of the Cz and Cy distributions about the origin
of the X, Y, Z axes, which was taken at the center of gravity of the

missile.
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cMo = 4 022 + 2 B22 + A22 ( + 4 ( 1

0mp = '4 (\2'l C12 + 2 B1 2 + A12 (

0mP = 4 [BU3 + A23 ()1+ 4aCi2 + 4OCii + 16 /("P N C13 (10-40)

+ 6 s -8 D12 + 8 ' Vo DI,

C,.= -4 [22 +C 22 8 r

= [A2 (X)2 + C!"2] + 8 1 , 11

C.,a =4 (12) T 1- [B 2  1 (i)]+(- 2

41 - V [1 1 92 +4" 2

C0-4 \2Vo-2 Oil 2 [Bil + ~d~ ]+ 42V"P C2

C. 4 [B.3 + J13 ()]+ 4a22 + 40C12 (01

+16 2 3r - ) -

0flq = 4 [A1 + C12] 8 T-0 2  2

C,,r = -4 1 1 G~ "+ 011 + 8 ( 1)

Equations (10-37) to (10-41) inclusive give 25 velocity derivatives in terms
of the inertia coefficients which can be obtained from the apparent-mass
coefficients presented in Table 10-3. By use of these formulas we can
systematically calculate the stability derivatives for slender missiles typi-
fied by that pictured in Fig. 10-6. It is of interest to note that the damp-
ing-in-roll derivative CzI is the only one involving A33, and 133 is fre-
quently the most difficult inertia coefficient to obtain.

TABLE 10-3. APPARENT MASS COEFFICIENTS

A. Line:
Mn11 = 0
M12 = 0
MIS = 0

M22 = 7pb2

4

m28 = 0

M= ipb 4
m 128"
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TAIBLE 10-3. APPARENT MASS COEFFICIENTS (Continued)

B. Circle:
ml,= rpa2

M12 = 0
mn13 = 0
M22 7rpa

2

7123 = 0

M33  0
C. Ellipse:

mi, = 7pa2

Mn12 = 0

m =3 = 0 + 2b
M22 irpb2

M2 3 = 0
7rp(a 2 - b) 2 a

8
D. Planar midwing, circular body:

ml, = irpa2

in 1 2 = 0

1I ~0
( a a'\

7rpS2 +s!

7n23 0 2

M33 . 7r' if a = 08

m3= - ( + R2) 2 tan-'f + 2Pv(1 - R2)(R 4 
- 6R2 + 1) tan- '

r2R' + R2(1 - R2)2} where/R = a

E. Cruciform wing, circular body:

M1 ml= rps2 I-a +at4-

Mi12 =0
m13 = 0 a

Ml22 = 2(1 aI a)

M 2
3 = 0

M 3 3 = 2P"- if a = 0
7r

m33, Fig. 10-16 if a 0 0
F. Midtail empennage with circular body:

in11  + 1{/( + -- 2

M12 = 0 a tl

m 3: See Ref. 13.

in2 2 = IrP2( -!f +a'

M 22 = 0 -2-.. _

28
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TABLE 10-3. APPARENT MASS COEFFICIENTS (Continued)
G. Multi/Inned body, three or more fins:

M11, = Mn22
+~p'I (a2/sl)n/2]4"n - (2)21

in1, = 01*a
rn13 = 0
'n23 = 0
M33, =.533ps' n =3 a =0

=n Ps4  n =4 a =0
7r 

.

n=P8 n. nfins

H. Regular inscribed polygon: //a
mil Mn2 2 = 0.654xpa2 n - 3

= 0.7877rpal n = 4
=0.823rpal n =5

= 0.8677rpa2 n = 6

I. Tangent-tail empennage, circular body:nsds
=I 27r 2 ±+ 4c2 sin X cos 2 (X/2) sin - 3X cos' (X/2) 1 2(r - 0f 3(X + sinX) 2Sfl X+sinX +2r cf

M2= 2T a2_ ' 4c sin X cos (X/2) F in2 - 3X cos (X/2)
f7p~ 2 3(X + sn [ 2 X +sinX J

rn, 2 = 0

wvhere
a,, {nh(tan)' + [ tan. + ( )ta2~ I~

a x +sin X
7r tj

a x - sin X
h/Ic + I + N'n' h/c - cos a

t2 _ 3

a X, sin X t2

f/-c- ~+ an + Cos x 
2

J. Midlail empennage, elliptical body:
Mil1 = 7rp(4C

2 
- V' - 2ab - bV)

M22, = 72 (82(a2 + b2) + 2ab2(a -b) -2abs(82 - a2 + 1b')3]* (a - b)2

k as - b(82 + a- ')j -2s-

If ~ =k2 + (a+ b)'] 7b2
712= V2 It,,2 + (11.2 - a2 + b2),q] t2

m1,2 - 0

M13
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Certain acceleration derivatives also follow easily from Eqs. (10-32),
(10-33), and (10-34). With a derivatives given by

a- o(&X/2Vo)

and P, , 0, , and Vo derivatives given by 4X/2Fo, PX2/2Vo2, 42,/2lo2,

1X/2Vo2, VoX/2Vo2, we obtain

O yo = -4ajl2 - 4iBx Cy = -4B12
C4 -- -4Bl1 Cy = --4B1., (10-42)

COy = 4C12 Crj = -4Cjj

cz o = -4,eB22 - 4(B 12  za" = -4B22
CZ =- -4B12 Cz = -4B23 (10-43)
Ozj = 4022 cz = -4C12

Cf o = - 4aB23- 40B13 Cza = -4B23
CIA = -4B,3 Cj = -4B 33  (10-44)

Cj=4023 0z = -4013

C p, = 4aC22 + 4C12 Cma = 4C22

C.0 = 4C12 C.m = 4C23 (10-45)
O0j -4D 22  C0m 4D 12

C.f o = - 4aCi - 40Cii C. a = -4C12

C. = -4Cj C.1 = -4013 (10-46)
C.4 = 4D12  C. = -4D,,

10-6. Stability Derivatives of Slender Flat Triangular Wing

Since triangular wings are of particular importance to missiles, they
present an appropriate means of illustrating the power of the method of

FIG. 10-8. Axes and notation for slender triangular wing.

Vi
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inertia coefficients for evaluating stability derivatives. In fact, we will
now systematically deduce the velocity stability derivatives for a slender
flat triangular wing, using Eqs. (10-37) to (10-41). The derivatives of
the drag force or those relating to axial velocity u are not given.

Consider the slender tr'angular wiag shown in Fig. 10-8. Let the
center of moments be at the centroid of wing area, let the wing planform
be the reference area, and let the 0-o
total wing span b. be the reference -o

length X of the equations of the pre-
vious section. The inertia coefficients T
Ai, are evaluated using Eq. (10-22)
wherein 4', 4)2, and 43 are due to unit
velocities v, v2, and p, as indicated (a)
in Fig. 10-9. Since v, of the wing streamline

produces no flow, we have 40, 0. . _
It immediately follows that C

il = A912 = J13 = 0 (10-47) -+ --

The potential 42 is that for unit v2

of the wing or unit angle of attack. (l)
It is well known that the potential _ +
distribution across the span of a .. + '.._-

slender triangular wing is elliptical,7  c
and that its lift-curve slope is 2,
based on the area of a circle of diam- 4,-+ P- -
eter equal to the span b.. These - #n +
facts are sufficient to establish that (c)

Fio. 10-9. Signs of potentials and
42 + (2 - ) (10-48) their normal derivatives for various

unit velocities. (a) Unit velocity
where the plus sign refers to the along 7, 01; (b) unit velocity along r,
upper surface, and the negative sign q2; (c) unit rolling velocity, C,.

to the lower surface. Also 04)2/On = +1 on the lower surface, and -1
on the upper surface. Thus, at the trailing edge (see Fig. 10-9),

A922= - 3- 4 2 04 - ds  - (. -S- no-[(s 2) ] d-

7rb.2
9

=R (1049)

The coefficient j 3 is determined with the help of the potential for unit p
taken from Lamb :'

40 = _ (2 - 72) (10-50)

The signs are chosen in accordance with Fig. 10-9. Thus, at the trailing
edge
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-43s .0 " 0')3

- x~s _y- p,(s, _ n,),,P jj dn
2SftJ

7rbm 
4

128SR(X2

The only independent inertia coefficient left, A-23, is zero, as the signs of
,2 and Oa3/On given in Fig. 10-9 readily show. The complete matrix of
inertia coefficients is

A1 A12 J13  0 0 0
-921 j2 j23 0 irbm2  0

A 1  A22  A - 04s (10-52)7rbm'

A31 A 32  A 33  0 0 -rb 2I

In addition to the inertial coefficients Aq we need certain of their
integrals given by Eqs. (10-36). These quantities are easily found to be

B22=

Ct22
D22  4 (10-53)

135A 2

j 22  7rA
4

These quantities enable us to write down the 25 velocity derivatives
directly from Eqs. (10-37) to (10-41).

pb,.

CY = 0

+ 2i+ qbm (10-54)
- 9A 2Vo

Cyq = 
27r pb,

Cr = 0

9A 2irbmVo

Cz- 2 3 2V02

CZPj 0
Cz1 0 (10-55)

CZq 1

Cz, = 0
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-0 1 + 7rrb
3+9A 2V
ira ir qbm3 9A 2Vo

1 - rA (10-56)P 32

C~q = P + 32 7r rb,
- 9A + 135A 2 2V 0

r 327r qbm
A = ' 135A 2 2Vo

CmC9 9A 2Vo2

Cm'g = 0

CmP = 0 (10-57)

In
Cmq 3ACm= 0

C., 0

C 7 r ___

9A 2Vo
C.= 0
C.1,= -_ia 327r qb, (10-58)

9A 135A 2V o

C 32ir pb,
135A 2 2Vo

C.r = 0

The foregoing derivatives include a number of kinds of forces and
moments: static, damping, Magnus, etc. Some discussion of these types
of forces and moments will be given in Sec. 10-10 when we examine the
effect of aspect ratio on the foregoing results. The noteworthy feature of
the foregoing analysis is the powerful manner in which it yields results.
It is known that dihedral introduced geometrically into the wing can have
an important influence on certain of the foregoing derivatives. Ribner
and Malvestuto 6 have included the effects of geometric dihedral in their
study of the stability derivatives of slender triangular wings. The
appearance of the aspect ratio in the denominator of certain of the sta-
bility derivatives is due to the particular choice of reference area and
length in this case, and does not indicate that the derivatives are particu-
larly important for low aspect ratios.

The acceleration derivatives can be easily written from Eqs. (10-42) to
(10-46) inclusive. The only new coefficient appearing is B3 3, which is
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found to be

B 33  (10-5C)320

Of the 30 acceleration derivatives given by the equations, only the follow-
ing seven are not zero.

2C - 27ra "

V0  3 3
C4 = - -- (10-60)

- 7a C r 167r

9A 9A 135A2

It is interesting to interpret the results for the derivatives of C and Cz
with respect to a, q, &, 4, and Vo in terms of the center of pressure of the
forces involved. Dividing Cm by Cz yields the center-of-pressure position
in fractions of the reference length from the wing centroid (two-thirds
root chord position). Converting these results to fractions of the root
chord c, we obtain

0). 1(10-61)8 1
15 12 2

The minus signs indicate that the centers of pressure are behind the
centroids in each case, except the center of pressure associated with a,
which is at the centroid. Increasing aspect ratio to the point where the
triangular wing is no longer slender will cause certain of the centers of
pressure to move, as discussed in Sec. 10-10.

It is also of interest to compare the zero and nonzero terms as deter-
mined in this section with the zero and nonzero derivatives given in Fig.
10-5, which applies to a triangular wing. It will be seen that all the zero
terms deduced on the basis of the Maple-Synge analysis do in fact turn
out to be zero. However, a large number of additional terms are also
zero, by virtue of the particular aerodynamic properties of a slender tri-
angular wing.

10-7. General Method of Evaluating Inertia Coefficients
and Apparent Masses

Several methods are available for evaluating the inertia coefficients.
There is, first, the method of evaluating directly the integrals given by
Eq. (10-22), which was utilized in the preceding section in determining
the apparent-mass coefficients for a triangular wing. However, a more
powerful method exists based on the theory of residues. This requires
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o. nation that maps the missile cross section
con. .us c, with no distortion at infinity. From
this m, e inertia coefficients without any difficulty
except -heL .u require summing an intractable infinite series.
It has been used by a number of authors, including Ward,' Bryson,"°

Summers," and Sacks.' The treatment of Bryson is the basis of this
section. It is our primary purpose here to derive simple formulas for
the apparent-mass coefficients in terms of the transformation wich
turns the missile cross section into the circle of radius e. The reader
who is content with the apparent-mass results of Table 10-3 may proceed
to those results directly. In Eq. (10-22) we have already defined the
inertia coefficients in terms of the potentials 01, 02, and 03 for two trans-
lations and one rotation of a given missile cross section. We now define
the apparent-mass coefficients as

=m,= -P dc? ds i,j = 1,2,3 (10-62)

The apparent-mass coefficients so defined are usually called "additional"
apparent-mass coefficients since they induce on a body in a fluid dynam-
ical effects additional to those due to the mass of the body itself. Because
such a di," ction is unnecessary for our purposes, we shall dispense with
the adje., e "additional." The apparent-mass coefficients do not actu-
ally have th, ensions of mass, but have dimensions that are readily
apparent f- eir relationships to the truly nondimensional inertia
coefficients.

Mil Mlf- 22--- s

AI =L A1 = A21 = ,

A A1 = m3 A23 = A32 = in"' (10-63)

PX X 'SR'A33 = M33S

The quantities X and SR are the reference length and area, respectively.
Although the quantities mij do not have the dimensions of mass, we will
call them apparent masses for short. It might be asked why a table of
apparent masses rather than dimensionless inertia coefficients is being
presented. The reason is that the inertia coefficients depend on reference
quantities X and SR which are not usually properties of the cross section
whereas the apparent-mass coefficients do not depend on X and SR.

It is well now to consider the crossflow plane 8 of a gi-,en missile cross
section, as shown in Fig. 10-10, together with the transformed plane r in
which the missile becomes a circle of radius c. Because we require the

flow fields at infinity in the physical plane to be undistorted in the trans-
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)Iplane " plane

z

n
c Ct

C

YY

(a) (b)

t n
z

r+dr d

= \d C 1-4
lae us) noeat pine; dete binatines for (,. h bund

formed plane, the general mapping of the a plane into the plane is given
by

ary C in the-physical plane, as shown in Fig. 10-10. Since 01 corresponds
to unit velocity along y, we have

-0, = cos (n,y) =dz (10-65)On ds

where cos (n,y) is the cosine of the angle between n and the y axis. Simi-
lariy, for Ik2 we have for unit vertical velocity

- cos (n,z) - -- -- (10-66)

Also, for unit angular velocity we have

a03 dr 1 dr2  1 d(fl)=r cos (n,t)= -r T -(0-

(Note that p is now taken positive when y rotates to z since we are using
the axes x, y, z rather than X, Y, and Z in this derivation.) The strata-
gem now brought into play to allow the use-of residue theory is to form
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complex combinations of the apparent masses as follows:

M11 + iM21 -P ,0 'an+ a),o

ip 1 ip (Wu -

The apparent mass m3 n has its own special formula with the help of Eq.
(10-67) : in 3 3 ~~ =p -C 02c 's = -p - - (~6 W3 - i 3) da 1-9

It is clear that the integrals with the exception of that for m33 have
analytic integrands to which the theory of residues is applicable. The
parts of the integrals involving the stream function can be expressed in
terms of the geometric properties of the missile cross section. Integrating
by parts

, jd d(80) - cadi(10-70)

and using the Cauchy-Riemann equation

2t = Lo (10-71)

we obtain

i d; d(8) - 3 Lods (10-72)

For the motions involved here P' is a single-valued continuous function
on the boundary so that the perfect differential d(3,P) is zero taken around
the boundary. We thus have with the help of Eqs. (10-65), (10-66), and
(10-67)

4 = -j = dz = -Sc

= a dy= -iSo (10-73)

0 ~3 da = a d(a3) =-jS

where So is the cross-sectional area, and a. is the complex coordinate of
the centroid of the missile cross section. The part of the integrals ofA
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Eqs. (10-68) and (10-69) involving the ccniplex potentials WVi(a) will be
evaluated in the plahc by tine use of residue theory. To do this we must
determine the expansions for W1, W2, W 3 valid in the region exterior to
the circle in the plane and isolate the coefficient of the 1-1 term.

First we will derive the expansions for W1 and W2 , which are similar,
and then the expansion for W3. If W,(3) is the complex potential for the
flow in the 3 plane for translation of the body with unit velocity along the
positive y axis with the fluid stationary at infinity, then WI(S) - 3

describes the flow for the body stationary with the flow velocity at

y

jplane t plane

n

C C,

i plane plane
FIG. 10-11. Further notation for use in determination of apparent-mass coefficients.

infinity in the negative y direction with unit speed, as shown in Fig. 10-11.
The complex potential for the flow in the " plane is formed by making the
substitution a = 3(r) into W1(j) - a so that

WI((t))- (')=- + ) (10-74)

where we have equated the transformed complex potential to the known

complex potential for flow past a circular cylinder. With the help of
Eq. (10-64) we have the final result for W1(i( ))

c2  an
+= - I (10-75)

n-0

The same technique serves to determine the complex potential for unit
velocity in the upward direction

C
2  •C

2  L. n

W =(( )) i("- 3) - F = - - . (10-76)
I0
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To obtain Wa(a( )) we make use of a clever result given by Milne-
Thompson2 6 for two-dimensional motion of an arbitrary body tranglating
and rotating in an infinite fluid with no circulation. The function 2i#P on
the circular cylinder into which the body is transformed by Eq. (10-64) is
called the boundary function. The function 2ia has the value obtained
from Eqs. (10-67) and (10-71) on the boundary of the circle

2i' = -i(aj) (10-77)

According to Milne-Thompson if this boundary function can be expanded
into a series of positive powers of " and a series of negative powers, the
complex potential is-equal to the series of negative powers of i.

=r+ = n r
,,-0 (10-78)

anf(.) L
n -0

so that 2i1' 3  -if(r&f( f) (10-79)

on the circle. In accordance with the result of Milne-Thompson,
Wa(a( )) is the series of negative powers extracted from Eq. (10-79),
which series we will denote as PP, the principal part. Thus

i _ bn (10-80)
n-1

' where b ' --- a+5
where bn c2m an = 1 n - (10-81)

rn--i a. = 0 n > 1

Having now determined the series expansions for W, W2 , and W 3, we
can now return to the evaluation of Eq. (10-68). Since the term of
degree t-1 is the only one contributing to the integrals of W, we have by
Cauchy's theorem of residues

W, da 27ri(al - c2)

W2 d = 2,ri(-ia, - ic2) (10-82)

4~W a =~d 2ri(-ibi)1

I
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The results for the apparent -masses from Eq. (10-68) are now, with the
help of Eqs. (10-73) and (10-82),

M11 + imr,= ip[2,ri(aj - 02) + iSC]

M12 + im22 = ip[2r(al + c) - Sc] (10-83)
M13 + in 2 3 = ip[24rb, - a.Sc]

These results give a simple means of evaluating all the apparent masses
of the missile cross section except m3a, if the transformation of the missile
cross section into the circle of radius c is known. It is to be noted that
all the quantities in Eq. (10-83) are then known. However, bi is an
infinite series given by Eq. (10-81), which may or may not be readily
summed.

The immediately preceding equation gives general formulas for all
apparent masses except m33. This apparent mass requires the following
special treatment for its evaluation because it is represented by a non-
analytic integral.

?n33=2 W. d(sj) - i 2 ~Pc(0-42 .2

Now, integrating by parts, we have

4 d(a;) = 4d(1 3;) - 3;4 s(10-85)On

and from Eq. (10-67)

P,~ d~) d(433;) + 1~ (a;) d(a;) =0 (10-86)

so that we are left with

S W. d(S;) (10-87)

The stratagem for evaluating this nonanalytic integral is to find some
function analytic outside the circle, which is numerically equal to 33 on
the circle. By substituting this analytic expression for ag into the inte-
grand, we do not change the numerical value of the integral, but we do
make it analytic so that it-becomes amenable to treatment by the calculus
of residues. The key then is the analytic expression equal to a on the
circle-C' (Fig. 10-11). On C' we have

0=) = A 2f\

n M--I
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with a-i- _ 1
to

or =- onC' (10-89)
n

n-

where bn is given by Eq. (10-81). We then have found the desired
analytic function. Making use of Eqs. (10-80) and (10-89), we find that
Eq. (10-87) becomes

m -- dr (10-90)

n-1 m--00

Only for those terms with m -n do we get a contribution so that

M33 = (27ri) nbnb.. (10-91)2 E
n-1

However, it can be seen from Eq. (10-81) that

C2"g (10-92)

The final result for m33 is

i 33  nbnbn (10-93)
n-1

The results for the apparent masses are now collected.

mil = 27rp [c 2r R(a,)]
mu Ip [ 27

M2= M1= -2rPI(ai)

M2 2 = 2 7rp [c2 - So + R(aj)]

m3 M31 = -2rPI (bl - ac so (10-94)

M2 27rpR bi - ac S)

M33 7 flnb5nma rp

n-i

Illustrative Example

Calculate the apparent masses and inertia coefficients for a slender tri-
angular wing.
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The transformation that takes the line of span b. in the a plane into
the circle of radius c in the t plane is

C2  b 2  .

- 6 = r + n

where we have identified the transformation with Eq. (10-64). The
values of the coefficients-an determine all the apparent masses in accord-
ance with Eq. (10-94). These coefficients are

bm2

a, = -~16
a-, = 1 Eq. (10-81)

ao = a 2 = a 3 = a4 0

The coefficients bn from Eq. (10-81) are

bo = b, = 0
bin4

b2 = ald,0
2  = 25-

'Forming the apparent masses from Eq. (10-94), we get

mii=2 P16 ~-0-1]=
(16 T6

m12 = 0

m22 = 2'p + 0 + b_2 -p

M13 = 0

1%3 -- 0

(bin"2 (t16) 7 rpb,'
m3=27rp \25 _kb _ 128

The nonzero coefficients from Eq. (10-63) are

A 2 2  = 2 2  = b - -

M 33  'Wbm 4

A 33  ; =X2S 128X2Sj

Trhese results for A 2 2 and A 33 are in accordance with the values given in

Eqs. (10-49) and (10-51) and obtained by different means.

10-8. Table of Apparent Masses with Application to the Stability
Derivatives of Cruciform Triangular Wings

The apparent-mass coefficients are known for a large number of bypical
missile cross sections in whole or in part. The apparent masses for a
number of such cross sections have been collected and are presented in
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Table 10-3. A number of interesting and useful points arise in connec-
tion with the table. Perhaps the first point of interest is that the coeffi-
cients mu, and m22 for an ellipse, be it the special case of a circle or a
straight line, depend only on the span normal to the direction of motion.
For a multifinned body of three or more equally spaced equal-span fins,
mi and in 2 2 are equal. If for any cross section the coefficients mil and
M22 are equal, then the coefficients for translation in all directions in the
plane are equal. A circle has a greater
apparent mass than any regular in- X
scribed polygon. For a cross section
with a vertical plane of symmetry the
coefficients M 12 and m2s are zero. For
a horizontal plane of mirror symmetry,
m12 and m13 are zero.

To illustrate the use of the table,
let us apply it to the calculation of the
stability derivatives of the slender
cruciform missile shown in Fig. 10-12.
In the next section we will consider a Xn -Xt
number of other examples. Let the
reference area SR be the wing plan- Y
form area Ybc, and let the reference I
length X be the maximum span b. X b
The origin of the system of axes is
taken a distance X,, behind the wing
apex. The stability derivatives are FxG. 10-12. Slender cruciform wing.
given in terms of the inertia coeffi-
cients Ai.in Eqs. (10-37) to (10-41), inclusive. The inertia coefficients are

toZined from the following apparent-mass coefficients from Table 10-3:

i1 1 - M 2 2 = 7rpS2

n3s = 2ps (10-95)

M12 = in 1 3 = M23 = 0

The -nonzero inertia coefficients- are thus

All A22=M1m =rS2

A A =PSR SR (10-96)
A33 = 3 __ 2bs"

X2S ib 2S3

The integrals of the inertia coefficients B11, Cu, and D11 given by Eq.
(10-36) are required: (Xlb).

B11  An d (10-97)
i J I b) b

*1
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With reference to the notation of Fig. 10-12,
7IS. 2 {X

A i t -2( X n X
\ c

with the result that

Bi = B 22 -

Similarly,

_I [2 + [ (+ + XbD 11 D, 225 -=- A2 3 C -- ) 2]

where A is the aspect ratio.
The foregoing results apply to any position of the origin of the body

axes. Let us take the origin at the wing centroid of area so that

Xb

The coefficients then become

4
A

Bit = B22 . Lr (10-98)6

G = C 22 = -

135A 2

It will be noted that these coefficients are simply related to those for a
triangular wing with the exception of A 33. The results for the stability
derivatives follow immediately.

Cy" = 2w pb
3 2V 0

2 3 2Vo2

2= ,+ 21 qb (10-99)3r " 9A 2Vo

27r pb
I 9A 2V0

2r

3f



STABILITY DERIVATIVES 389

r 21r bo
Cz.3 2V-  

0

27r pb

2ar 2 rb (10-100)

99A 2V0

27r

CZ,=27r pb

C1, = CIO = C = Cr =0
A (10-101)

7r by0
9A 2Vo

7r pb
Cmq 9A 2Vo

CmP - + 32+ r rb (10-102)9A -135A 2 2V0

7r

327r pb

135A 2 2Vo

r" pb

9A 2Vo
7r boC O 9A 2Vo2

CI 7 32ir qb (10-103)

9A 135A 2 2Vo (1
327r pb

135A 2 2V,

Cnr -- -
3A

This example illustrates the utility of Table 10-3 for evaluating stability
derivatives. The effect of adding a round or elliptical body to a cruci-
form wing can be readily determined.

Let us see how the results obtained above correspond to-the forces and
moments arising out of the Maple-Synge analysis. With references to

NFig. 10-4 it can be seen that the following derivatives are zero besides
those predicted to be zero on the basis of the Maple-Synge analysis:
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Case 1: Ma, NO, , Lqp, LL Z, Mp
Case 2: Ma, Np, Lr
Case 3: Ma, No
Case 4: Ma, Np

The derivatives M. and Np are zero because of the conical flow field
associated with a cruciform wing and the particular choice of moment
center (at the wing centroid).

Y Z L M N

A0

-!: 0
22

3A

(a)

Y Z L M N

a T E'-/ A- _2V_

3 3 9

(b)
Y Z L Mt N

2r(qb _) 21r( rb 32r / rb -32 qb

9A \2 " 9A V2V, _____ 3-5A2I-2Vo) 135A2!V)

2( Lrb b 3-322r (b9A ~2 V)_____________ 13 5A' U2V 0)

r 27___ / A~Pb N ___ 321 (Pb _____

Fra. 10-13. Classes of derivatives for slender cruciform wing. (a) "Ordinary"; (b)
Magnus; and (c) gyroscopic derivatives.

It is informative to try to classify the various types of forces and
moments arising for the cruciform wing. The classification is divided
into Magnus terms, gyroscopic terms, and other terms. By Magnus forces
and moments we mean those forces and moments developing as a result
of roll at angle of attack or at angle of sideslip. Such terms here are pro-
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portional to Pp or ap and are listed in Fig. 10-13. It is easy to show that
the Magnus forces in this case act a distance e/12 behind the wing centroid.

The second class of forces and moments are gyroscopic. A gyroscopic
force or moment is taken to be one proportional to the product of two of
the three angular velocities: p, q, and r. For instance, the term

21r rb pb
9A 2Vo 2Ve

gives rise to two of the derivatives shown in Fig. 10-13. A missile rotat-
ing about two axes will tend to act like a gyroscope, as a result of the
gyroscopic terms. It can readily be shown that the gyroscopic forces
act a distance 4'5c behind the centroid of wing area in a position off the
wing planform.

The other aerodynamic terms listed in Fig. 10-13 are the static terms in
pitch, Z,. and Ma, and the static terms in sideslip, Yp and Np. Likewise
we have the damping terms due to pitching velocity, Z, and I, and those
due to yawing velocity, Y,. and Nr. It can be seen that the damping
forces act a distance c/4 behind the wing centroid. The term L, is the
damping in roll. Certain miscellaneous terms associated with bVo/2Vo
are due to axial acceleration of the missile.

10-9. Further Examples of the Use of Apparent-mass Table

A number of stability derivative problems involving complicated
interference effects can frequently be solved, using the apparent-mass
coefficients of Table 10-3. The examples selected here are just a few of
many possible. As a first example let us determine the lift-curve slope
of a cruciform wing and body combination.

BExample I

The lift in the plane of the body axis and the wind direction will now be
determined, using Table 10-3. The included angle a,, between the body
axis and the wind direction, and the angle of bank 9 are both considered
arbitrary. From Eqs. (10-37) and (10-38) and Fig. 10-15

Cza = -21 22  z -2A 22 e cos (P (10-104)
Cyp = -2 1 l Cy = -2Ji-ee sin

Let us take the lift equal to the normal force to the degree of approxima-
tion of this calculation:

CL = -Cy sin p - Cz cos o
= 2a,(An, sin2 p + A22 cos 2 (p)

since j 22
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The value of An from Table 10-3 is
/i n = n rps2( a 4

so that

CL=iS2 
1 - a c (10-105)

This result is to be compared with Eq. (5-35), with which it is in agree-
ment. We note that the lift-curve slope does not depend on ( for a
slender cruciform wing-body combination, nor does it depend on the pre-
cise planform of the wings. It depends only on the missile cross section
at the maximum span.

Example 2

Consider a missile of n equally spaced equal-span fins as shown in con-
figuration G of Table 10-3. Let us calculate how the damping in roll CIP

is affected by the number of fins.
4 With reference to Eq. (10-39), we

p
see that, fora=#=q=r=0,

3 we have

CIP = -4A3
2 Since Cip is directly proportional to

A 3 3, and since we can let the refer-
1 - - ence area and length be constant

as n changes, we can write

0 0.25 0.50 0.75 1.00 (C). (3) (10-106)
1 (C1 ,) 2 -(r 3 )
n

FiG. 10-14. Effect of number of fins on This ratio has'been calculated from
dampirg in roll. the numerical results given in Table

10-3 and the results are shown in Fig. 10-14. It is seen that the addition
of fins to a missile adds to the damping in roll at a decreasing rate, as
would be expected. The influence of the body is treated in the next
example.

Example 8

Consider a planar or cruciform missile of fixed span, and permit the
body radius to vary. Let us determine how the damping in roll is
affected by changes in-body radius a, as shown in Fig. 10-15. According
to Eq. (10-39), the damping in roll is

-4.A33 + 4exBa 8 -X Cis 4PB23 - 8 rX CH

CIP 2Vo2Vo
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Since both planar and cruciform missiles considered have horizontal and
vertical planes of symmetry, the follow-
ing inertia coefficients are zero, L

A12 = Ala = A 23  0

and we are left with
-s +S

CP = -4A 33

If we base Ci. on total span and totad
panel area, including that blanketed by
the body, the reference quantities will
be constant as body radius varies. We +8
can. then write z 0

Flo. 10-15. Crossflow plane at wing
CIP m33 trailing edges of slender cruciform

(C,,).--- (m 33)- 0. (10-107) missile.

Known values of m33 can be used in this equation to obtain the change
in damping, or known values of Czp can be used to obtain M33. Numer-

1.2

0 0.6

f 0.4

0.2 -

0 0.2 0.4 0.6 0.8 1.0
a

II. 10-16. Effect of body radiu, on damping in roll for fixed span.

ical results are available for C 8 for both the planar and cruciform cases
given by Adams and Dugan.27 Analytical results are given for the planar
case by Lomax and Heaslet. 21 These results, plotted in Fig. 10-16 as a
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function of als, can be thought of as yielding damping-in-roll coefficients
or apparent-mass coefficients. In any event, it is clear that the addition
of a body with a value of a/s up to 0.4 causes very little change in the
damping in roll. Actually the angle of attack on the inboard -'",ions is
relatively ineffective compared to that on the' outboard stat The
loss of effectiveness due to blanketing of the inboard stations b -dy
can therefore be easily compensated by favorable interferenc ' - ,dy
on the wing panels. The small differc- between the ratios i,. _ ."ar

and for cruciform wings is notable.

Further Example

The effect of interference among the various parts of an empennage,
fuselage, horizontal tail, upper vertical tail, and ventral fin on the stabil-
ity derivative C., is treated in Sec. 10-11, on the basis of the apparent-
mass coefficients of Table 10-3.

10-10. Effect of Aspect Ratio on Stability Derivatives
of Triangular Wings

Although slender-body theory proves to be a powerful tool for calculat-
ing the stability derivatives of many types of missile configurations, it
must be used with discretion when the configurations are not slender, as
we have pointed out in several connections already. The first-order
effects of departures from slenderness are primarily a function of the
effective aspect ratio BA, and slender-body theory is in a sense the theory
for BA = 0. The first-order effects of BA for wings are well approxi-
mated by supersonic wing theory. It is thus clear that a comparison of
the stability derivatives of slender-body theory with those of supersonic
wing theory for triangular wings will give much insight into the applica-
tion of slender-body theory to the prediction of the stability derivatives of
nonslender complete missile configurations. T: - tomparison will now
be made with the help of the results for the sta' ility derivatives of tri-
angular wings on the basis of supersonic wing thi ory as collected by Rib-
ner and Malvestuto.' 6  The comparison will bring to light significant
phenomena not predicted by slender-body theory. For the purpose of
the discussion, it is convenient to consider the stability derivatives in the
following natural groupings:

Static stability: CL., Cy#, C,,, C.#
Roll damping: CIP
Pitch damping: Cl,, C,&, CL., CLh
Dihedral effect: -CI

Magnus forces: r C,, p

The reference area is taken as the wing planform area, and the reference iength
is taken as the wing span. If the semiapex angle of the wing is w, then the
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primary independent variable for the discussion, the effective aspect
ratio, is

BA - 4B tan w
B = (Ml- 1)

Static Stability Derivatives

The results of slender-body theory and of supersonic wing theory' 5 for
the variation with BA of CL, and C. are as follows:

Slender-body theory:
rA

01.n = 0 (10-108)

Supersonic wing theory:
_ irA

CLa - 2E(ir/2, k) BA < 44 (10-109)
BA>4

C. 0; BA > 4 or BA <4

where, k2  1 - --A) (10-110)

The ratio of CL, calculated by supersonic wing theory to that calculated
by slender-body theory is designated as CZ. and is plotted in Fig. 10-17
against BA. It is clear that the slender-body theory is about 35 per cent
in error for BA = 4 where the leading edge becomes sonic. The results

1.0

0.8 ..

0.6

0 0.8 1.6 2.4 3.2 4,0 4.8 5.6 6.4 7.2

BA

~FiG. 10-17. Effect of aspect ratio on stability derivatives of triangular wing.

0
A ~ ~ 0.---.~--
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for C,,, for both theories are identically zero. (The wing centroid is the
moment center.) This result is a straightforward result of the fact that
both theories must give conical flow fields and conical pressure fields for a
conical-configuration. (See See. 2-4.)

The lateral derivatives Cy0 and C,,a are zero for a flat triangular wing
on the basis of slender-body theory. It is clear that the normal forces on
the wing can have no components along the lateral body axis. Any side
forces or yawing moments must therefore result from forces on the side
edges of the wing, so-called leading-edge suction forces arising from the
high flow velocities around a sharp leading edge.'" An asymmetric side-
slip condition is necessary to produce Cy or C., which can occur only if
a and #3 are both not zero. For triangular wings with supersonic leading
edges, these forces are zero because of the absence of leading-edge suction.
[The leading-edge pressure coefficients corresponding to oblique shock-
expansion theory are applied in a plane normal to the leading edge.)
The extent to which leading-edge suction produces Cy and C, for tri-
angular wings with subsonic leading edges depends to a considerable
degree on the physical condition of the leading edges. The sharp leading
edge of the theory on which infinite suction pressure acts is a mathe-
matical idealization. Only by some degree of leading-edge rounding will
any appreciable fraction of the upper theoretical limit be achieved.

Damping in Roll

The values of Cz, on the basis of supersonic wing theory have been given
by Brown and Adams.1 6

Slender-body theory:
_-irA

c, -32 (10-111)P 32

Supersonic wing theory:

16[( + -rA I2  2 K') BA < 4
= 16[(l + k2)E(ir/2 k) - (1 - k)g(k) (10-112)

C, - BA >4
3B

The ratio of C1. calculated by supersonic wing theory to that calculated
by slender-body theory is designated C* and is plotted against BA in
Fig. 10-17. It is clear that the effect of BA on C1. is less than on CL,.
The value of C(, can be assumed to apply well to wing-body combinations
up to values of a/s of about 0.4, on the basis of Fig. 10-16. The
values of CG. are given by Brown and Heinke,19 from wind-tunnel tests of
triangular wings mounted on a body of revolution for several supersonic
Mach numbers. These values have been normalized by the theoretical
value for BA = 0 given by slender-body theory, and are presented as a
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function of BA in Fig. 10-18. The general variation with BA of the
damping in roll is the same theoretically and experimentally, and the
agreement between experiment and theory is fair on an absolute basis.
The difference is greatest in the region of BA = 4 where the leading edge
becomes sonic. It is known that the disagreement of CL, on the basis of
theory and of experiment is similar to that shown2" in Fig. 10-18. For

1.0

0~ __ -____o

0.80

0 0

0.6

0.4

* 1.62
* 1.92

0.2

0 1 2 3 4 5 6 7 8

BA
Fio. 10-18. Comparison between experiment and theory for damping in roll of tri-
angular wings.

CL, the disagreement around BA = 4 is known to result from the tran-
sonic-type flow resulting from the sonic velocity normal to the leading
edge of the wing, and undoubtedly similar effects prevail for C.

Damping in Pitch

The damping-in-pitch derivatives are bothersome, in that they include
the combined effects of 6 and q, and the effects of these two independent
variables have quite different behavior with changing BA. To obtain a
proper understanding of the term Cx, Ci., CL4, and (m& it is vital to
understand the differences in the types of motion characterized by the
two conditions 6 = 0, q 0 0, and a 0 0, q = 0. To illustrate these two
types of motion, Fig. 10-19 has been prepared. The angle 0 as shown is
the angle between a fixed direction and the wing chord, and a is the angle
between the instantaneous flight direction and the wing chord. The
instantaneous flight direction is the instantaneous direction of the velocity
of the center of gravity. Oonsider now uniform motion with q constant
and & = 0. This is seen clearly to be characterized by perfect loops in a
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VO vertical plane, since 6 = q is a constant
a 0and a is also constant, so that & 0.

The second type of uniform motion char-
acterized by q = 0 and & = constant

ing chord corresponds to a wing of fixed attitude

Chord Win undergoing a uniform vertical accelera-
tion as if freely falling. If one of the

0foregoing cases of uniform motion pre-
vails, then the appropriate stability deriv-
ative applies.A type of motion which prevails prob-

(a) ably more frequently than the former

examples of uniform motion is sinusoidal
pitching oscillation, which is a combina-

u aconst " -- tion of the two former motions. Several
u constat Wing chord types of sinusoidal motion are illustrated

SIin Fig. 10-20. In case 1, the missile
wgt axis is always aligned in the flight direc-

(b) tion, so that a = 0 and q is sinusoidal.
FRG. 10-19. Types of uniform mo- In case 2, the missile axis has a constant
ti6n involved in damping in pitch.
(a) & = 0, q = constant; (b) q = 0, direction in space while is varying

= constant. sinusoidally as a result of changes in
vertical velocity. In case 3, the flight

- /, 1,

(a)

(b)

(c)

..... Flight path . Missile axis
Fio. 10-20. Types of sinusoidal pitching motions. (a) & 0, q - 0 = sin wt; (b)

= sin wt, q 0; (c) q a sin wt.

............... .. .. .. .. .. .. .. .. .. .. .. ............
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path is essentially straight while the missile axis is changing direc-
tion around it in a sinusoidal manner. It is clear that 0 and a are both
equal and in phase such that & = 6 = q. The significant damping
derivatives are in this case (CL& + CL,) and (Cm& + Cm).

Let us inspect the effects of BA on CLq and Cmq first. These results are
available in the work of Miles, 17 as well as results for &

Slender-body theory:
2~r

3q (10-113)
C q = -- A

3A
Supersonic wing theory:

3 (2k2 - I)E k) + (1 - k2)K(k) E(7r/2, k) (10-14)

- 7rk2 (10-114)
3A[(2k2 - 1)E + (1 - k2)K] for BA < 4

CLq = 0

16 for-115)
9.B for BA>4

These results are based on the wing span as reference length, and are for
rotation about the wing centroid which coincides with the center of
moments. Different positions of the center of rotation and center of
moments are discussed subsequently. The ratios of CL, and C,q on the
basis of supersonic wing theory to those on the basis of slender-body
theory are designated CL and C,*, and are presented as a function of BA
in Fig. 10-17. For small values of BA the force CLq acts a distance c/4
behind the wing centroid. :For BA > 4 the value of CL, is zero; the
value of Cmq, however, is not zero but negative. As a result, the center of
pressure has moved an infinite distance behind the wing. Thus, C,,q will
have a stabilizing influence for any axis of rotation in front of the 11/12
root-chord position for all BA values.

Let us inspect the effects of BA on CL& and C..

Slender-body theory:
27r

CL(0-116)
-rCm&

Supersonic wing theory:

CL& 2 [ 3k(B 2 + 1) (2B2 + 3)1
3B [ 1(2k2 - 1)E(ir/2, k) + (1 - k2)K(k) B (r/2, (10-7)

9r A = (2k2 1)B+(I-k2)K EBo+3]
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-168 (10-118)

C,, 9BIA 2  for BA > 4

The values of C*L and C0* do not depend solely on the parameter BA, as
do CLq and C.,q, but rather on both B and A. The values of these param-
eters are shown in Fig. 10-21 as a function of BA for B = 1. The values
of C, and C* have the same numerical values, a fact indicating a uniform

center of pressure for & motion in
1.2 distinct contrast to q motion. As

previously mentioned, this center
I B-1 of pressure occurs a distance c/12

.B- behind the centroid. Thus, as long
S0.4--------as C*. is positive, Ca will tend to

-; - damp & motions for rotations about

axes in front of the three-fourths
.- 0.4 , -- root-chord position behind the wing

apex. However, as shown in Fig.
-0 1 2 3 4 6 10-21, for some value of A depend-BA ing on B, the value of CL& becomes

FIG. 10-21. Variation with aspect ratio of negative and therefore destabilizing
certain pitch damping derivatives of tri- for positions of the axis in front
angular wings. of the three-fourths root-chord

position.
For changes in center of rotation the values of CLq and C.mq will be

altered in a manner different from the usual moment axis transformation,
because the downwash distribution along the wing will be substantially
altered. Let C'L., ' , CLI, C, be values of these derivatives for given
centers of rotation and moments which may be different. Let CL4, Cm&,
CL., and Cmq be the values for a new center of moments a distance 1, behind
the old center of moments, and for a new center of rotation a distance 12
behind the old center of rotation. The quantities are related as follows:

CLa = CLa

Cm, = C. + CL'

CL , = C - 20 12 (10-119)
Cmq = C~q 20'. -+ ' i2M

Lq X q
1- 1, 11 12C~~~q a J" - C -~ - 2 CLa

The quantity %A is the reference length, and the factor 2 is a result of the
fact that the derivatives are based on qX/ 2 Vo and &X/2Vo. It is to be
noted that the a derivatives transform exactly as a derivatives as,
indeed, also do the q derivatives if 12 is zero. However, with a change in
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the center of q rotation, the redistribution of downwash along the wing

chord introduces the terms proportional to 12.

Dihedral Effect

The dihedral effect -Cl is the negative of the rolling moment due to
sideslip. If the missile is in a positive sideslip attitude with the wind-
ward side on the right, facing forward, and if the rolling moment is nega-
tive, tending to roll the missile into a left turn with the left wing moving

-0.020 Slender-body theory

-0.015 . the

-0.010

-0.005

%' 0-

0.005

0.010

o Leading edge sonic
for ,-50

0.015 I I
0 1 2 3 4 5 6

A
Fi, . 10-22. Rolling moment due to-sideslip of triangular wings; Mo = 2.

downward, then the dihedral effect is stabilizing or positive. Thus C1
negative is stabilizing. The value of C, has been determined for a large
number of wing planforms on the basis of supersonic wing theory by
Jones, Spreiter, and Alksne.18 For angle of sideslip greater than zero,
there is an asymmetry in the sweep of the leading edges, and hence of the
wing planform, as viewed in the streamwise direction. This change in
planform is significant in supersonic wing theory, and in effect causes the
dependence of Ci on 9 for a fixed value of a to be slightly nonlinear.
Actually, as long as either leading edge does not change from subsonic to
supersonic, or conversely, as a result of sideslip, the dependence of 01 on
can be taken as linear. It is apparent that the value of Cf, besides
depending on Mach number and aspect ratio, will also depend on sideslip
angle/3.

i
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Figure 10-22 has been prepared to show the qualitative dependence of
Cz, for a triangular wing on A for M0

2 = 2. Up to the point where the
leading edge becomes sonic, slender-body theory gives a fair estimate of
the dihedral effect. However, when the leading edge of the wing becomes
sonic, BA approximately equal to 4, the dihedral effect changes from
stable to unstable. The two circles on the curve show the precise values
of aspect ratio for which the leading edges are sonic for a sideslip angle of
50. The effects of thickness will influence the value of A for which the
leading-edge shock wave detaches.

The rolling moment due to yawing velocity can also be calculated on
the basis of supersonic wing theory.'"

Slender-body theory:

71 a (10-120)

Supersonic wing theory:
SCir ir(l + 9A 2/16)a (10-121)

= 9AE(r/2, k)

Magnus Forces

By Magnus forces we mean the force Cy developing as the result of
rolling velocity at angle of attack (or CL as a result of roll at sideslip) and
proportional to ap. At angle of attack a it is clear that no force can
develop along the lateral body axis as a result of pressure forces normal
to the wing planform. Any side force or yawing moment must arise as a
result of leading-edge suction forces. An analysis of the ideal leading-
edge suction forces"6 yields the following results for the Magnus forces:

Slender-body theory:
2.rCy"P = 27r

(10-122)
fnap - T

=9A

Supersonic wing theory:

cy" 47rk3
CrP 3E(r/2, lc)[(1k2 + 1)E(r/2, k) - (1 - k2)K()J] (10-123)

= -2rk 3(A/16 + 1/9A)
E[(k2 + 1)E - (1 - k2)Kl

The value of Cyp as given by this equation decreases continuously with
BA as shown in Fig. 10-17 to a value of zero at BA = 4. For BA > 4
there is no leading-edge suction, so that Cy,, and C., are both zero.

10-11. Contribution of the Empennage to Certain Stability Derivatives;
Empennage Interference Effects

Up to this point in the present chapter, we have concerned ourselves
with the stability of what are called tailless configurations. This is not to
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say that the configuration has no tail. We mean by a tailless missile one

for which the stabilizing and control surfaces are contained entirely, or

for the most part, between the crossflow planes that bracket the wing.

This definition is a functional one, in order to separate missiles into one

class, which can be wholly treated by apparent-mass methods, and the

opposite class, which requires a consideration of wing-tail interference as

described in Chsp. 7. For a missile which consists essentially of a winged

part plus an empennage in tandem, the contributions of the separate

parts to the stability derivatives can be calculated by the foregoing

methods. But, in addition, account must be taken of the wing-tail

interference. In this section we will be concerned with wing-tail inter-
ference phenomena not treated in Chap. 7, and with interference effects

between the various parts of the empennage. The empennage is com-

prised of body, a horizontal tail, an upper vertical tail, and a lower vertical
tail or ventral fin. As in the preceding section, it is convenient to con-
sider the derivatives in the following natural groups:

Static stability: CL,, Cm,, CY, C.0
Damping in roll: CzP
Pitch damping: CLQ Cmq, CLa, Ca

Yaw damping: Cey, Cn,, Cro, C,

Static Stability Derivatives
The static stability derivatives of the empennage are influenced by

interference between the various parts of the empennage, and between
body and wing vortices and the empennage. In so far as CL, and Cm, are
concerned, both these influences have already been treated at some length
for the condition of zero sideslip. In principle, the values of CYr and Cn0
could be similarly treated, except for the fact that the upper and lower
vertical tails differ in size and shape, unlike the left and right horizontal
tail panels. (The cruciform missile is a notable exception.) In this sec-

tion we confine our attention to the effects of 0, and consider successively
the empennage interference effects and the body and wing vortices. It is
desirable to have a generalized scheme for analyzing the special empen-

nage interference effects arising from the inequality of upper and lower
vertical tail spans. The scheme we will now outline is based on slender-
body theory and is generalized to nonslender missiles. It applies equally
to low, mid, or high horizontal tail positions and is valid over that range
of a and # for which the empennage sideforce and yawing-moment charac-
teristics are linear.

The general scheme for analyzing empennage interference effects is
based on systematically building up the empennage from its component
parts, as shown in Fig. 10-23. Starting first with the quantity on the
left side of the equation, the sideforce on the body is subtracted from the
sideforce represented by the cross section BHUL since the sideforce on
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the body alone is developed essentially on the body nose and does not
represent a contribution of the empennage. The notation is as follows:

B body alone
H horizontal tail alone
U upper tail alone
L lower tail alone
B empennage (BHUL - B)

The first term on the right side of the equation in Fig. 10-23 represents
the effect on the sideforce of adding the horizontal tail to the body, and
the second and third terms represent the effects of adding successively
the upper vertical tail and then the lower vertical tail. These three
terms are to be "normalized" into sideforce ratios that can be applied to
nonslender configurations. It is logical to normalize the sideforce due to
the addition of any given component by the sideforce of the component

BHUL- B - (BH - B) + (BHU - BH) + (BHUL-.BHU)
FIG. 10-23. Decomposition of empennage.

itself calculated on the same basis. Any tendency of the means of
calculation to underpredict or overpredict would be minimized by the
formation of such a ratio. Furthermore, by proper choice of the defini-
tions of the components alone, the ratios can be given the direct physical
significance of interference effects. Let us now write the equation for
the sideforce on the basis of the build-up shown in Fig. 10-23, and then
form the sideforce ratios.

YR = YBHUL - Y. = (YBH - YB) + (YBHU - YBH)

+ (YBUL - YB1U)
= (YBl!- Yn) YB + YBIW- YB )

(Yna- YY 1)L

+ ) Y_ YL (10-124)

It is to be noted that the sideforce due to the addition of the horizontal
tail to the body has been normalized by the sideforce of the body alone,
rather than that of the horizontal tail which is zero. The above scheme
for the sideforce applies equally to any other forces or moments due to
the empennage, although a different order of build-up might be desirable
in some eases. We have not yet defined precisely what we mean by the
various components. The body alone is a pointed body of revolution with
the same base cross section as the body cross section at the empennage

I...
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location. The upper tail alone corresponds to the upper tail panel
mounted on a perfect reflection plane; that is, the sideforce due to the
upper tail alone is one half the sideforce on a surface composed of two
panels similar to the upper tail panel. A corresponding definition holds
for the lower vertical tail alone or the ventral fin. The horizontal tail
alone is the wing formed by joining the horizontal tail panels together.

The three sideforce ratios shown in parenthesis in Eq. (10-124) are
given the following notation, and at the same time are specified in terms
of apparent mass ratios

(K 11 )B - YBI - YB = (mn)B1 - (m1)B (10-125)

(K) =Ymmu - YBH = (mll)Bnu - (mll)(H
Yu (mi)u (10-120)

(K1I)L YBIwz. -- YBIU = (ml)BIuL - (mI)Blu (10-127)
YL (mlI)L

These sideforce ratios are analogous to the lift ratios KB and Kw used in
Chap. 5 to specify the lift interference of wing-body combinations. We
can now write the final result for the empennage sideforce and yawing
moment.

(Cr0)R = (CYp)B(K11), + (Crp)u(Kn)u + (Cr#)z(K1)L (10-128)

C,) = 4. (10-129)

The quantity (lo,)v is the distance between the center of moments and
the center of pressure of the sideforce on the empennage. It is interesting
to interpret each term of Eq. (10-128) physically. The ratio (KOB

shows how much the sideforce on the body is increased (or decreased) by
the addition of the horizontal tail. The ratio (Kl,)u shows how much the
sideforce of the BH combination is increased by the addition of the upper
vertical tail in multiples of the upper vertical tail mounted on a reflection
plane. It thus includes any increase in force on the upper tail due to the
sidewash effects of BH, and it includes any sideforce on BH generated by
the upper tail. The factor (K)L has the same general interpretation as
(Ku)u. However, now the sidewash effects over the ventral fin can be
enhanced by the action of the upper vertical tail, and the sideforce gener-
ated by the ventral fin can conceivably be caught in part by the upper
vertical tail. The physical significance of these quantities has been
further discussed by Nielsen and Kaattari, 21 as well as their application to
the effects of ventral fins on directional stability. The subsequent
example shows the application of the analysis to a cruciform empennage.
In Eqs. (10-128) and (10429) the values (Crf)D, (COr),, and (CYO)L are to
be obtained from experiment or the most accurate available theory.
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Up to this point we have been concerned with the effects of sideslip
only for that range of angles of attack and sideslip for which nonlinear
effects of vortices or other causes are unimportant. For large enough
angles of attack or sideslip, however, vortices discharged by the wing or
body, or both, will produce significant nonlinear effects. In principle
these vortex effects can be treated in essentially the same manner as they
were treated in Chap. 7 for wing-tail interference at zero sideslip. How-

ever, the qualitative effects of sideslip are
-r PB different from those of pitch, and so a
C .qualitative discussion of the effects of

-rw rw sideslip should prove useful. The princi-
'D pal qualitative difference due to the addi-

tion of sideslip is illustrated by Fig. 10-24.
The body and wing vortices have been
displaced laterally with respect to the tail,

FIG. 10-24. Body and wing vor- so that no symmetry exists about a vertical
tices in vicinity of empennage plane. The displacement laterally of the
for combined pitch and sideslip. vortices is due principally to the facts that
the wing vortices are discharged by the wing essentially in the streamwise
direction, and the trailing-edge shock wave tends to align the body vor-
tices in the streamwise direction. The body vortex farther from the
upper vertical tail is stabilizing, tending to increase the directional
stability, but the body vortex nearer the tail has a dominant destabilizing
effect. Nielsen and Kaattari2 have discussed methods for calculating
Cy. and C,,, including body and wing vortex effects. A brief r(sum6 of
this discussion is now given.

The calculation of the effects of the wing and body vortices on Cy, and
C,, proceeds from a knowledge of their strengths and positions at the
empennage. The theoretical basis for determining the wing vortex
strengths and positions has been covered in Chap. 6, and similar informa-
tion for the body vortices can be obtained with the help of Chap. 4. It
is essential to include the effects of image vortices inside the body if com-
pletely erroneous results are to be avoided. The external and internal
vortices induce velocities normal to the horizontal tail and upper and
lower vertical tails, which vary spanwise but not chordwise if calculated
by the method of See. 6-4. These normal induced velocities can be
interpreted as twisting the horizontal tail, and the upper and lower
vertical tails. The resulting forces can be estimated by a strip-theory
integration across the individual surfaces. Although such a strip-theory
method neglects panel-panel interference, such interference can be
accounted for by the more sophisticated methods of reverse flow dis-
cussed in See. 7-6. When the vortices are very close to the surfaces of
the empennage, they will undergo large lateral movements as a result of
their images in the empennage. A strong coupling will then be intro-

-Ik
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duced between the effect of the vortices on the empennage and the effect
of the empennage on the vortices. This strong coulD ag can be accounted
for by the method of See. 4-9. However, it should be borne in mind that
the boundary layer will tend to diminish this strong coupling, and that

secondary vortices induced at sharp exterior corners may tend further to
modify the coupling.

Up to this point we have considered the effects of sideslip and pitch to
be independent, in so far as our discussion was concerned. Any coupling
between angles of attack and sideslip should produce a term in CL" and
Cm, proportional to P or a term in Cy. and C,p proportional to a. An
examination of Eqs. (10-37) to (10-40) reveals no such terms arising in
the apparent-mass method. Therefore coupling of the type considered
does not occur for slender missiles obeying slender-body theory. How-
ever, for extremes in angles of attack and sideslip, q., or Mach-number
effects proportional to the product ag frequently appear. Their calcula-
tion in some cases can be made on the basis of shock-expansion theory.
Coupling between a and P3 also arises in the effects of wing and body
vortices on the empennage, since both the vortex strength and the
lateral displacements of the vortices depend on a and/j.

Damping in Roll

The damping-in-roll derivative Cip is unique in that it is the sole deriva-
tive requiring a knowledge of the apparent-mass coefficient m3a, which is
usually more difficult to obtain than the other coefficients. We will be
occupied with the quantitative interference effects between the various
parts of the empennage which have an influence on C1,, but will confine
our consideration of wing-tail interference to a few qualitative remarks.
As a starting point the equation for the roll-damping derivative based on
slender-body theory, Eq. (10-39), is given

C1 = -4A 3 + 4aBi3 - 8 2 C1 - 4OB 23 - 8 2L C23  (10-130)

For a conventional empennage with a vertical plane of symmetry, we
have

A12 = A23 0
with the result that"

CP=-4;3s + 4aB, 3

Thus we have a damping-in-roll derivative which varies with angle of
attack. However, if the empennage has also a horizontal plane of mirror
symmetry, then B13 is-zero and the term proportional to angle of attack
disappears. Let us -confine our discussion henceforth to CIP at zero angle
of-attack.

A study of empennage interference effects on C , can be conveniently
carried out using the same general method for CYO and C,. With refer-

*1
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ence to Fig. 10-23, we can write an equation for damping in roll similar to
Eq. (10-124) for sideforce.

( =z) I,)B' - (CI)B] + [(CZ)DH'U - (Cl,)BH'
+ -(C)BwUI (10-131)

In this case we are taking the horizontal tail alone H' to include the tail
area blanketed by the body, and not to be just the surface formed by the
exposed panels. This shift in definition of the tail alone from our hitherto
invariable practice is particularly convenient for the study of C , and is
used in this connection only.

In normalizing the contributions to the damping in roll of the successive
additions of H', U, and L to the empennage, we divide by the damping in
roll of H', U, and L alone, respectively, thereby specifying three damping-
in-roll ratios

(K 33) 1 ' -(C)B 111 ' - (C)B = (m3 3)B11' - (m33)B (10-132)
(CIP)(M33)H'

(K33)u = (Cl' )B'v - (CP)B11 ' = (m33)BH'u - (m3 3 )B ' (10-133)
(C,,)u(m33)u

(K33)L =-OH~r (C) H

_ (maa)D'uL - (m3a)B,1'u (10-134)

(m33)L

The damping-in-roll derivative of the empennage is

(C)E = (K33) ,(C 1,)n, + (K 33)U(C,)u + (K33)L(C1,)L (10-135)

These equations permit the calculation of the damping in roll in so far as
the apparent-mass coefficients m33 are available. The ratios (K3 3),1 ',
(Ks3)u, and (K33)L have the same physical interpretations with respect to
damping in roll as the K22 coefficients have for directional stability. This
particular method of calculating C, is instructive when the spans of the
tipper and lower vertical tails are unequal since it shows the relative
effectiveness of the two surfaces. However, for a cruciform empennage
or any empennage with a horizontal plane of symmetry, the relative effec-
tiveness of the upper and lower vertical tails may be of no great concern.
In this case a detailed decomposition of the interference effects by the
foregoing method would be unnecessary, and more direct methods such
as those in Sec. 10-9 may be preferable. A collection of data on C, for
triform empennages is given by Stone.20

The interference effects of wing and body vortices on C1, of the empen-
nage differ. The rolling wing lays down a vortex which thereafter has
little tendency to rotate, and, as the vortex moves essentially streamwise
from wing to tail, the tail rolls with respect to the vortex. The angular
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phase difference due to such motion is directly proportional to p. From a
knowledge of the vortex strengths, which differ from side to side unless
a = 0, and their positions, an estimate of their effects on Ct can be made.
The body vortices remain fixed in direction if they ar6 not entrained by
the wing flow field, and the time average of the forces developed by the
empennage rotating through them will depend on the precise vortex
configuration that obtains. Because of body roll and boundary-layer
effects, it seems probable that vortices of different strengths and radial
locations may be generated, so that the time average of the empennage
rolling rnment is not zero. Also interaction between the body vortices

* and the rolling wing field can complicate the phenomenon.

Damping in Pitch (and Yaw)

In the past it has been the usual practice to assume that the contribu-
tion of the empennage to the damping in pitch overrides that of other
sources which-are neglected.24  This
assumption is usually justified when C)
the centers of gravity and of mo-
ments are much closer to the wing Fliht
center of pressure than to the tail path

center of pressure. In this analysis
we will assume arbitrary positions of
the centers of moments and of gray- < -

ity and see how the damping depends .,

on the actual positions of these
quantities. First, let us study damp- -clm.,
ing due to q, and then that due to 6.

Consider-a missile with the center
of moments distinct from the center Wing Center Center Tail
of gravity, which moves in a circular centroid of of centroid

path, as shown in Fig. 10-25, with moments gravity

a = 0 and q = constant. Such mo-
tion could be obtained on the end of
a whirling arm. There is no down-
wash field (that due to wing thick-
ness is neglected) due to angle of Vertical velocity distribution
attack, since a = 0. However, be- FIn. 10-25. Wing-tail combination in

attackuniform q motion.
cause of the rotation of q, there is a
distribution of vertical velocity of the air along the missile, as shown in
Fig. 10-25. The upward velocity of the air at the horizontal tail is
approximately q(/,)n. The local angle of attack due to the q motion at
the horizontal tail is thus

(A) (10-136)TVo
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neglecting any downwash at the tail resulting from wing lift due to q.
The increase in lift of the empennage resulting from (Aa)zi is

(ACL)E = (dCj * qi. ~(10-137)
\da, qB-o V77

where the asterisk indicates that the lift-curve slope of the empennage is
to be evaluated at the Mach number existing at the horizontal tail loca-
tion. The dynamic pressure qg is that prevailing at the horizontal tail.
The contribution of the empennage to CLq and C.q of the missile is thus

(CLq)E = 2 (d 1f) (10-138)

(Cmg)E = -2 - \1,, (l\ '  (10-139)
Xaf qo T. l/lrif

Similarly for the wing we have

(CL ')w = _2 1d\4 1A (10-140)

(Cmq 2 = dL)y) (1m (10-141)
(C-I),, = -2 V37-),, \ L;,/ ( L;,/

where we have assumed that the dynamic pressure at the wing location is
essentially free-stream dynamic pressure. The total contribution of
wing and empennage to the pitch damping is thus

(C m,) w+E 2 (C ) * 4qi (4 (lc ) (1P(c ) 1 -1 2(c= )+ =-2 \ / o if ,, 7 1,),,
-2IC (10-14)
S- 2 To ),, T ,,. W],

One point should be noted in connection with this equation. We have
assumed in Fig. 10-25 that the missile is fixed to the rotating arm at its
center of gravity. This is in accordance with the general notion that the
velocity of a missile is specified by the translational velocity of the missile
center of gravity, plus an additional velocity determined from the missile
angular velocity and the radius vector measured from the center of grav-
ity. However, the missile could be attached to the whirling arm at some
point other than the center of gravity, but this case has been precluded in
the derivation.

Equation (10-142) is of interest because it displays the roles of the wing
and empennage as well as the roles of the center of gravity and center of
moments in pitch damping. For flight of a missile, the center of moments
and center of gravity are taken to be coincident. If the center of gravity
is sufficiently close to the wing center of .pressure (due to q), it is clear
that the tail contribution to C, outweighs that of the wing. However, if
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the wing and tail lifts are not of greatly different magnitude, the center of
gravity might not lie sufficiently close to the wing center of pressure for
the contribution of the tail to Cmq to be of overriding importance.

A simplified analysis can also be used to calculate the contribution of
the empennage to CLz and Cm&. The motion corresponding to constant a
with q = 0 is shown in Fig. 10-26. The motion in question is that of a
wing-empennage moving downward with constant acceleration and no
angular velocity. Thus, unlike the case of Cm,, no question of the center
of rotation (gravity) position arises in the determination of Cm,. The
essential concept which makes possible the simplified analysis is the
so-called downwash lag concept. It is assumed that the downwash field
of the wing at the empennage lags the wing angle of attack by the time it
takes the wake to travel from the wing to the empennage. It is further
assumed that the downwash field at the empennage is the steady-state

Wing vortex sheet,

Vo Wing centroid,, Tail centroid .

W-ckd
Fia. 10-26. Wing-tail combination in uniform & mctfi.o.

downwash field corresponding to the angle of attack of the wing tpq.iI-6 d
by the first assumption. (As the figure shows, the empennagobaL nt.v,,.'l
downward with respect to the wing vortex sheet a distance h.) If thc wi%
angle of attack changes by an amount Aaw, the change in angle ol attack
of the horizontal tail is

_ de
del Aaw (10-143)

By the downwash lag concept

a ll/
Aal n (10-144)

with the result that

A ltH d (10-145)

The horizontal tail length ln will subsequently be specified. The lift

developed by the empennage as a result of Aai, is

(ACL dCL* qIn( da (10-146)
(da B - qo V0  a)

or L = 2 J e (10-A7)

L) oq
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The contribution of the empennage to C& is

(dCL\* qu /(de , (04

(Om&)B ~ ~ _ -2CZ Tdc ,/ o\7o 4 )FJ(1-18

Because we-have used a simplified analysis based on steady-flow quan-
tities to analyze a complicated unsteady-flow process, the precise defini-
tion of the tail length 1l, has been lost. Tobak I has shed some light on

this matter using his unsteady-flow analysis based on the indicial-func-
tion method. Tobak finds that the downwash lag concept is essentially
correct, but depends for its accuracy on the proper choice of ln. The
proper choice turns out to be approximately the length from wing centroid
to tail centroid. The distance from the tail centroid to the center of
rotation is not involved, since rotations are not involved in pure &
motions, as we have noted. The values of Cm and CLa of Martin et al. 2'

are in accord with the simplified analysis only if the above choice is
made for the tail length.

The damping-in-yaw derivatives corresponding to those for pitch are

WYAK = - 2(dCy\ * qv A

- 2 MCA* qv \ ler

= +2 (C)* 0v i) (1) (10-149)

(Co= 2 %d ~ *~ qv aIV

The asterisk now applies to slopes evaluated at the Mach number pre-
vailing on the upper and lower vertical tails, and the subscript V indicates
mean quantities over the upper and lower vertical tails. The quantity
do/d3 is treated in Chap. 6. The total damping in yaw for sinusoidal
oscillations is Cn - Cno, in contrast to the quantity Cmq + Cmz for damp-
ing of sinusoidal pitching oscillations.

Illustrative Example

Let us calculate the contributions of a cruciform empennage to the
derivatives Cyp 0, Ci, CLq Cmq, CL&, and Cm, for the example missile of
Fig. 7-9. The center of moments is taken at the missile center of gravity
at the two-thirds chord location of the wing-body juncture. Let Mo =2,
a = 50, and 0 = 0'. The reference area is taken to be the exposed wing
area, and the reference length is the mean aerodynamic chord of the
exposed wing panels. Body or wing vortex effects are to be disregarded,
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a

__Tf
a s-a

BHU

-2s

_1T
S

a
BHUL

FiG. 10-27. Components in build-up of cruciform empennage.

so that the quantities calculated apply only to the range of a and/9 over
which they are linear.

(a) Cy, C.O:

The static derivative C, due to the empennage was calculated in See.
7-5, using a method different from that to be used here to calculate Cy.
and Cnp. For a cruciform empennage, we have

The first step in the present procedure is to evaluate the interference
factors (K11)B, (Kl1)u, and (K11)L given by Eqs. (10-125), (10-126), and
(10-127). To do this, we must utilize the apparent mass results of Table
10-3 with the notation of Fig. 10-27.

(msn)B = rpa2 = 0.316rp
( nil)B = irpa2 = 0.316rp= rS a2 a4)

(m1,6)BUL (ps2 (1 - + L= 3.00irp

(Mll)B11U = Lp (I + a2) [ + ( a'+ + P~ (1 1.68p

(mii)u = 7rp(s - a)2  0.782ip2 =

(ml)L = 7rp(8 - a) 2 = 0.782irp
2
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The desired interference factors are-now

0.316 - 0.316
(KII)B = 0.316 - 0

1.568 - 0.316
(Ki)u = 0.782 1.602

3.000 - 1.568
(K1I)L - 0.782 = 1.832

We note that the addition of the lower vertical panel to the empennage
with the other three panels present develops about 15 per cent more side-
force than the addition of the upper vertical panel to the empennage with
only the horizontal panels present. Since the upper vertical tail and
lower vertical tail correspond to one-half of whole wings, their sideforce
curve slopes are

(CY#)U = (CrO)L = -Y (0,.),,

The horizontal tail alone is a triangular wing with supersonic leading
edges, so-that it has the two-dimensional lift-curve slope based on its own
area. Thus, based on the exposed wing area as reference area SR,

, ,= i 4 S11
(C~)u= (~p L 1 (M0

2 
- 1 ~

14 (1.25\2
-.2- = -0.356

Thus from Eq. (10-128)

(CYa)E = 1.602(-0.356) + 1.832(-0.356)
= - 1.221 per radian

The tail length is taken as that between the centroids of the wing and tail
panels. (lo.)v = Y(2.25) + 3.16'14- /(1.25) = 4.74

(4) = Y"(c,)W = 1.50
Thus from Eq. (10-129)

(Cf)E = 4.74 (-1.221) = 3.86 per radian(C. ) = -1.50
It is noted in passing that these values of Cy. and C., do not include

body or wing vortex interference.

(b) C, :

The previous derivatives Cy. and C, were calculated by accounting for
all interference effects arising in a step-by-step composition of the empen-
nage. Although Eqs. (10-132) to (10-135) provided for an analogous
calculation for 0C,, we will use an alternate method. From Fig. 10-14 we
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see that 'the addition of vertical panels to the horizontal tail increases the
damping in roll in the ratio 1.625 to 1. Here we are keeping the span of
all panels constant and letting the body radius vary, in particular becom-
ing zero in this instance. Now let the body radius grow to a value yield-
ing a/s = 0.31, and Fig. 10-16 shows another 2 per cent increase in damp-
ing in roll. Thus, if (Cll)i,' is the damping-in-roll derivative for the
horizontal tail including the part blanketed by the body, we have

(Czl) = 1.625(1.02)(C,) 11,

On the basis of Eq. (10-112), the tail-alone damping in roll is

(C,)H, = -y3(Mol - 1)" = -0.1925

Based on the wing area and wing span, the value of (C1 )11' is

(0 )11 = - (0.1925) 2.1 (1.12)2 - 0.080

The damping in roll for the complete empennage is thus

(COE)E = 1.625(1.02)(-0.080) = -0.133

(c) CLq, CMq, CL4, Cm :

The damping-in-pitch derivative C1.q from Eq. (10-138) is

( C L ) E = 2 \ -- J q,

the asterisk denoting that the empennage contribution to the lift-curve
slope is to be evaluated at the Mach number prevailing at the horizontal
tail. We will assume that this Mach number is the same as the free-
stream Mach number, and that the dynamic pressure at the tail qji is the
same as the free-stream dynan "c pressure. Since the distance to the
center of gravity has already been evaluated as 4.74 and

/dCL\

- -(Cy )R = 1.221

the value of (Cj q)E is

(CLI)E = 2(l.221)(1) (t) =7.72

The center of moments being coincident with the center of gravity,
(C q)E is. 14.74N(Cq)B = -7.72 4.50/ = - 24.4

Here the derivative is based on the mean aerodynamic chord of the wing
SW, the derivative being with respect to qj;v/2Vo.

4

.11
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The derivatives (C),v and (C, a)& are given by Eqs. (10-147) and
(10-148) 

as
(CLa)Es 2 (dL * qTrl (de'a

(Cm&)B - (CL)B (1c

where 1i is the distance from wing centroid to tail centroid. The value
of (del/da)ii is obtained from the illustrative example of Sec. 7-5. Since,
in the absence of Mach number and dynamic pressure changes from the
free-stream value at the tail position, the horizoatal tail effectiveness is

(de

we can readily determine (de/da)ir from the fact that -1 = 0.73. There-
fore,

()H=0.27
The values of the & derivatives now are

(CL&)R = 2(1.221)(1) 4.0) (0.27) = 2.08

(Cm,&)E = -2.08 (.5) = -6.59

Again the derivative is with respect to &6w/2Vo. The damping-in-yaw
derivatives follow readily from Eq. (10-149).

SYMBOLS OTHER THAN STABILITY DERIVATIVES

The following symbols do not include those for the stability derivatives
since these are fully described in Sec. 10-2.

a radius of body at wing trailing edges of cruciform missile
(Fig. 10-15); radius of body of a cruciform empennage
(Fig. 10-27)

On complex coefficient in mapping function taking missile
cross section into circle of radius c

A aspect ratio of wing alone or wing panels joined together
AVs inertial coefficient of missile cross section; i, j = 1, 2, 3
.4" value of inertial coefficients at missile base
b span of cruciform wing
b. span of planar wing
b,, complex coefficients associated with expansion for W3 (a)

B (l0 2 -)
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B see Eq. (10-36)
e root chord of triangular wing; radius of circle into which

missile cross section is mapped
5'Y see Eq. (10-36)
CZL lift-curve slope
(CL,)*, (Cm.)*, etc. ratio of lift-curve slope on basis of supersonic wing

theory to that based on slender-body theory
CL , Cx,' etc. values before change in center of moments and center of

rotation
(dCL/da)B* lift-curve slope of empennage evaluated at local Mach

number of horizontal tail surfaces
(dCy/d#)g* sideforce curve slope evaluated at local Mach number of

vertical empennage surfaces
C'l, moment-curve slope
Cx, Cy, Cz, C1, Cm, C,, force coefficients for X, Y, Z, L, M, and N
D degree of term in expansion for stability derivative in

Maple-Synge analysis
see Eq. (10-36)

B elliptic integral of second kind
complex-valued function of u and p occurring as coeffi-

cients in Taylor expansion of Maple-Synge analysis
flt, fA12 even and odd real functions of p
fA }, f I-I real and imaginary parts of fjk~z
F Z + iY; also incomplete elliptic integral of first kind
F' value of F after rotation about X axis through 27r/n

radians
g i.+j+k+ +I+m+n
i, j, k, l exponents in Eq. (10-11)
I imaginary part of a complex-valued function
k modulus of elliptic integral, (1 - B 2A 2/16) 4
K complete elliptic integral of first kind
(K 1)B, (K1)L, (Ki)u sideforce ratios defined by Eqs. (10-125), (10-126),

and (10-127)
(K33 ),,, (K33)L, (K 33)U rolling-moment ratios defined by Eqs. (10-132),

(10-133), and (10-134)
11 distance of new center of moments behind old center of

moments
12 distance of new center of rotation behind old center of

rotation
11 distance from centroid (wing or tail) to missile center of

gravity, Fig. 10-25
1. distance from centroid (wing or tail) to center of moments,

Fig. 10-25
11 reference length
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L, M, N positive moments about X, Y, and Z
L' value of L after rotation about X axis by 27r/n radians
m, v integers in Maple-Synge analysis
Mii apparent-mass coefficients defined by Eq. (10-62) ij

1,2,3
Mo free-stream Mach number
n outward normal to missile cross section in crossflow plane;

also number defining degree of missile rotational sym-
metry, Fig. 10-3

p, q, r angular velocities X, Y, and Z
p / value of p after rotation about X axis by 27r/n radians
P, Q integers in Maple-Synge analysis; P = i + k, Q = j + 1
q0 free-stream dynamic pressure
q11 dynamic pressure at horizontal tail
R real part of a complex-valued function
s distance measured along contour of missile cross section

in crossflow plane; also local semispan of triangular
wing, planar wing-body combination, and cruciform
wing-body combination

sm maximum semispan of triangular wing
Sc cross-sectional area of missile
SH exposed area of horizontal tail
SR reference area
t time
T N + iM; also kinetic energy of flow per unit length along

X axis of missile
T1 value of T after rotation about X axis through 2r/n

radians
u, v, w linear velocity components of missile center of mass along

X, Y, and Z axes
Uo, vo, wo, po, qo, ro values of u, v, w, p, q, and r about which general

Taylor series for X is expanded; Eq. (10-3)
Ur, Vr, w., pr, qr, rr values of u, v, w, p, q, and r after transformation of

mirror symmetry in Maple-Synge analysis
v1, v2  velocity components of missile cross section along q and

" axes, respectively, Fig. 10-8
V 0  free-stream velocity
W 1, W 2, W 3  41 + i1, 02 + i'2, d3 + iO3
x, y, z set of axes illustrated in Figs. 10-10 and 10-11, x positive

rearward along missile longitudinal axis
Xijklmm OgX/Ou 0vi OwkOp? OqmlOrn; g = i + j + k + I + m + n
X, Y, Z set of axes fixed in missile, Fig. 10-1; also set of force

components acting on missile along X, Y, and Z.
(Context reveals which definition applies.)

X0, Yo, Zo positions of X, Y, Z for zero pitch, yaw, and roll
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X1, Y1, Z, positions of X, Y, Z after yaw about OZo
X2, Y2, Z2  positions of X, Y, Z after yaw about OZo and then pitch

about 0Y,
Xo value of X force accompanying uo, Vo, wo, po, qo, and re
Xb value of X at missile base
X, X coordinate of fixed cross-sectional plane through which

missile is passing, Fig. 10-7
X, value of X at missile apex
X,, Y", Z, values of X, Y, Z after mirror reflection
X/ X coordinate after rotation about X axis by 27r/n radians;

X X
XX coordinate of center of pressure
a y+iz

,c value of a at centroid of missile cross section
a angle of attack

angle between missile longitudinal axis and free-stream
velocity

Aall change in local angle of attack at horizontal tail
Aaw change in local angle of attack at wing
P angle of sideslip
(del/da)H rate of chapge of downwash angle at tail with wing angle

of attack
-+ i-q; complex variable of plane in which missile cross
section is circle of radius c

vertical axis in r plane; also lateral coordinate in crossflow
plane of Fig. 10-8

7111 effectiveness of horizontal tail
0, it, ) angles of pitch, yaw, and roll describing missile attitude,

Fig. 10-2
general reference length used in defining stability deriva-

tives
w + iv

h, n, " axes parallel to X, Y, and Z and fixed to crossflow plane
through which missile is passing, Fig. 10-7

p free-stream density
da/dfl rate of change of sidewash angle with angle of sideslip
(angle of roll
.0 potential function
01, 42, c potential functions due to unit values of vi, v2, and p
1P angle of yaw; also stream function

1, 02, ;P3 stream functions corresponding to q¢i, 02, and q53

1i IPI, 1k2, or t'3
&I r+ iq

-we-li
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Subscripts:

B due to body or due to addition of body
E empennage
H horizontal tail panels
H' horizontal tail including area blanketed by body
L lower vertical tail
r quantity after mirror reflection
U upper vertical tail
W wing
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APPENDIX 10A. MAPLE-SYNGE ANALYSIS FOR CRUCIFORM MISSILE

In this appendix we will deduce the effects of rotational and mirror
symmetry on the stability derivatives of a cruciform missile. Consider
now a missile possessing n-gonal symmetry; and let it undergo a rotation
through an angle

=27 (10A-i)

Under this rotation the physical forces and moments do not change;
that is, they are invariants of the transformation. Let the original sys-
tem of notation given by Eq. (10-10) apply to the missile before rotation,
and let the same symbols with primes refer to the same physical quanti-
ties described now in terms of the new coordinates. Thus,

F' = Fe-  T' - T lie X' = X L' = L
V/ V6-  Ut  U P P - ' - p

Now, if these primed quantities are substituted into Eq. (10-11), we must
obtain an equality. Furthermore the functions fikm, tijkt, Xijkt, and lijk
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remain unchanged since only the independent variables v, w, q, and r were
varied in the transformation. Carrying out this substitution, we obtain

eiv I fik,(U,p) vlpiwk&Oe-ip(i-+k- ) = jkf1,(u,p)Pv' iwk
ijkl "jkl

'ijkl jik (10A-3)
ijk ' xki (U'p)V~kCe-(i-+k-) = i xkl Xq(up) Vipiw 1A

ijk ilkl

lijkl(U,P) p iOkCOle -- i( - i+ k- l) = I lijk (Up) piOkl

jikl ijkl

To preserve the equality for arbitrary values of v, , w, and C we must
have, for F and T,

exp n (I1-i +j - k + 1) =1

so that

i-j+ k -1- 1 = mn m=0, ±+1, 02. . . . (10A-4)

In a like manner we obtain, for X and L,

i-j+k- I= mn ?n= 0, ±1, ±2. . . . (10A-5)

Equations (10 t.-4) and (10A-5) must be satisfied by missiles possessing
n-gonal -symmetry.

Let us now consider a systematic scheme for investigating the terms of
Eq. (10-11) term by term to see if their retentions are compatible with
Eqs. (10A-4) and (10A-5). We are interested in the degree D of the
terms and the symmetry number n of the missile. Let us introduce
numbers P and Q

P = i + k Q = j + l (1OA-6)

which are determined by D and n as follows,

P + Q = D P- Q = mn-+1 (10A-7)

for the fijk, and tjkZ terms. Likewise, the coefficient Xijkz and ljkl are gov-
erned by

P + Q = D P- Q = mn (10A-8)

Equations (1OA-7) and (10A-8) can be considered selection rules for pick-
ing those terms of degree D in Eq. (10-11), the retention of which is com-
patible with n-gonal symmetry of the missile.
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To illustrate the use of the selection rules let us apply them to ascertain
admissible terms in the expansions for the forces and moments of a cruci-
form missile, n = 4. It is convenient
to construct a PQ diagram, in which Q rn-i

P is abscissa and Q is ordinate. Only 6-'-----------.\ 1 I I I I .

positive values of P and Q are ad- 5  . 4P Q,

missible because of analyticity. The
PQ diagram for n = 4 is shown in 4 --

Fig. 10-28, where the sets of straight 3, --- - --
lines corresponding to Eq. (10A-7) are \ I i
shown. Where the curves intersect 2 - -- -

at integral values of the coordinates, I 1--------- I

allowable values of P and Q are found. 11 "
For instance, no intersection is found 0' 1 2 3 4 5 6 P

for terms of degree D = 0, and only Fand T

the intersection P =i, Q = 0 is found Qr-
for terms of first degree. The terms 6 -n-- '-------
of first degree are then found from I- ------ ....--
the following sets of values of i, j, k, .- , I
and 1, yielding P = and Q = 0: 4( 1

P= Q = 0 3
,2---- -- .... .

1 0 0 0
0 1 0 0

The terms in question are fiooov and
fooow, as well as hooop and tooow. No 0 1 2 3 4 6 P

second-degree terms appear, but terms X and L

of third degree arise in the set of FiG. 10-28. PQ diagrams for cruciformmissile.
values P=0, Q =3, and P =2,

Q = 1. Again the sets of values of i, j, k. and 1 are

P 0 Q=3 P =2 Q=1

i A, j I i ,j
0 0 0 3 2 0 0 1
0 0 1 2 2 0 1 0
0 0 2 1 1 1 0 1
0 0 3 0 1 1 1 0

0 2 0 1
0 2 1 0

The general expansion for the force Y can now be written up to but not
including terms of fifth degree

F = foooV + fooo-W + fooa + fo1o2ui )2 + fo2 
2 -+ f0300p 3

+ f2ooslpA" + fs2oo2p + foim iovv floi p (
402105 + fo12opW2 + terms of fifth degree (10A-9)
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A similar expansion exists for T. The PQ diagram for the force X and
the rolling moment L is included in Fig. 10-28. The series obtained from
this diagram has terms as follows:

X = X0000 + XooW6 + XIooiV- + Xouoiw -+ Xuoovp
+ terms of fourth degree (10A-10)

Since there are potentially 1 term for D = 0, 4 terms for D = 1, 10 terms
for D = 2, 20 terms for D = 3, etc., we should have many terms in the
above expansion for F, but rotational symmetry has reduced the number
to 12. There are potentially 35 terms in the expression for X including
forms of third degree, and through rotational symmetry we have reduced
the number to 5.

Having deduced the general consequences of rotational symmetry, let
us now turn our attention to mirror symmetry. The positive conven-
tions of the axes, forces, moments, etc., were given in Fig. 10-1, and these

r Xr

q r r

(a) (b) Pr
FIG. 10-29. Positive conventions involved in mirror symmetry (a) before and (b) after
reflection.

conventions are again repeated in part in Fig. 10-29. We will take the
plane of mirror symmetry to be the XZ plane. Let the Y axis be reflected
in the plane to obtain the new axis Yr. The reflected axis system is thus

X = Xr Y = -Yr Z = Zr (10A-11)

It is important now to define positive quantities in the new system in the
same general manner as in the old system. Thus the linear velocity
components and the forces are positive along the positive Xr, Yr, and Z,
axes. Positive directions of the angular velocities and moments cor-
respond to cyclic rotation of the axes. If X -- Y,, then r, is positive; and,
if Zr > Xr, then q, is positive, and similarly for the moments. We thus
obtain

Ur = U Pr = -P Xr = X Lr = -L

r = -V qr = q Y, = -Y Mr = M (10A-12)
w. = w r. = -r Zr = Z N. = - N

It is-to be noted that the positive vectors for the angular velocities and



STABILITY DERIVATIVES 425

moments do not necessarily correspond to positive axis directions because
X ,,Y,,Z, is not a right-handed system of axes as X,Y,Z is.

The set of variables given by Eq. (10-10) now becomes
F, = Z, + i Y, = Z - i Y P

T, = N, + Of, -N + iM -P
Vr = w, + iv, = W - iv = ('10A-13)
'. = Wr - iV, = W + iv = V
r +iq = -r+iq = -o

Co rr. - 4q. = - r - = -=

We now assume that the forces and moments can be expressed in the new
coordinates in precisely the same form as in Eq. (1OA-3) and that the
functions f ikl, tizlk, x~jjZ, and lijkz are the identical functions in either system
of coordinates. Thus

T,. = tijk1(U,,Pr);rWiirrr1 (10-14)
ijk

We already know that F, = P and T, - T, so that

~, f~,-t~u7 p,.) rircoke,,I = ~ ~k(U'p) i~VjCkW1

f ijkl (Ur,P) Pr'rr = r ik~~)vw
ijk ijkl (10 A -1 5 )

jiki ijkl

or from Eq. (1OA-13)

fk(u, - P) 'Vj(- )k(-) = f jkl(U,p) PiYjO

ijki ,jk (1OA-16)
~ = iikl(U 'p) iVwkO1

For the equalities given by Eq. (10A-16) to be true we must have

fjki(U, - p) = (-)k+ljijkz(UP)

tjk(U, -- p) = - (-- 1)k+1i,,k(u,p) (10A-17)

Now we must further break fi/kz and tijkz down into-even and odd functions
of the rolling velocity p, and into real and imaginary parts. If the super-
script (R) stands for real and (I) for imaginary, we write

fk = hi. + 'A (10A-18)

tijkl = 41'11 + iti(1

Substitution into Eq. (10A-17) gives

MU,- p) + MIf (,-p) =(- 1Y+1ff13(U'P) - if"PAU p)1
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It follows thatf ]k and ff, must be even or odd functions in p according as
k + I is odd or even.

(k + )0.. (k + 1)o.dd
even in p f, odd in p

fz odd in p f(]j,1 even in p

Here let the superscript (0) stand for an odd function of p and the super-
script (B) for an even function; then

fik = fl.j + ifUiZ)O k + 1 evenf "k " f ' '+~ d (10A-19)fijkl = f,',O,. + if','k I +'l odd

If we complete similar analyses for T,, X,, and L, we obtain the following
set of relationships for the odd or even nature of the real and imaginary
parts of the functions:

k + I even:
fikl = fgi + if}ik
Xijk =X 13 z + 1X'2,kj (IOA-20)
ti1kl = 1,O~ + it ,~
lil = , + i f1j2

k + I odd:
fivc= f,!j), + I,
tijkl = Xjo) + tit

1EIM~j + Ali%

We are now in a position to determine the expansions for the force and
moment coefficients in real rather than in complex form. The analysis
will be carried out for the four cases listed at the beginning of Sec. 10-3
up to and including terms of second degree. With reference to
Eq. (I0A-10) for X, we now have
X = Xoooo + Xooii(rl + q2) + X1io(W + iv)(r - iq)

+ xono(W - iv)(r + iq) + X1100(W2 + v2)

+ terms of fourth degree (1OA-22)

Since X must be real, the functions xijkj have the properties
x oooo = o

X0o11 X 101
X x01 0,1 + ixC501  (1OA-23)

Xo X= 0i0 - ixijoh
X1100 - iBBO

From these properties the real form of X becomes

X = xfo + o 41 1  
2 + r2) + 2xj° o(wr + qv)
+ 2xJo10(wa - vr) + XJ110 (W2 + v2)

+ terms of fourth degree (1OA-24)

2 . . . -
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We can write an expression for the rolling moment L from Eq. (10A-24)
by observing that the expansion of L is of the same form as that for X,
see Eq. (10A-10), but that the superscripts (E) and (0) must be reversed.

L = °bo + Qj°1 (q + r2) + 2tjO1(wr + qv)
+ 2lj'°~,(qw - vr) + 1101 0(W2 + v2)

+ terms of fourth degree (10A-25)

The equations for X and L as given above are the complete Taylor expan-
sions for these forces for a cruciform configuration up to and including
terms of second degree (there are no terms of third degree) about the
point w = v = q = r = 0. The coefficients depend on the linear velocity
along the missile longitudinal axis and the roll rate or spin about it.

The expansions for F and T given by Eq. (10A-9) are separable into
real and imaginary parts to yield .Y, Z, M, and N.

F = Z + iY =(fU801o + ifW01O)(r + ig)
+ (f Iofo + iff10 )(W + iv)

+ terms of third degree (10A-26)
so that

Z= f8oor - f 50 + fI Ow - (1Ao7
Y= f~l0 r + foj~q + ff30  + (E)IA-7

Similarly for M and N we obtain

M = t °dor + teolo + t 0 ow + t(o) VtN 'W I tIooo (10A-28)
N toPor - tf° 0 q + t0010V tidoV

APPENDIX 10B. MAPLE-SYNGE ANALYSIS FOR TRIFORM
MISSILES AND OTHER MISSILES

Let us now consider the triform missile and construct first the PQ dia-
gram for complex force F and complex moment T in accordance with- the
selection rule, Eq. (10A-4). The PQ diagram is shown in Fig. 10-30.
There is no term of degree zero. The terms of degree unity correspond
to the values P = 1, Q = 0.

P=I Q=o

i k j I
0 1 0 0
1 0 0 0

The terms of degree two correspond to P = 0, Q = 2.

P =0 Q -2
i kc j
0 0 0 2
0 0 2 0
0 0 1 1

-j:o
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Thus the expansions-for F and T for terms up to and including those of
second degree are

F = foolOc + f1oooV + fooo2 + fo2oo0 - fo100
+ terms of third degree (10B-1)

T = too0oW + t1oooV +o 5 00020 +to 2oo ± toioiVC
+ terms of third degree (10B-2)

In accordance with Eqs. (10A-20) and (10A-21), the complex terms fjk
and 4jkj can be decomposed into real and imaginary parts that are either

Q'

I \ I/ i I I

i 3

0 1 2 3 4 5

F and T

Q

S7-,- I I- I
IA I I 11, - 7 . I--

4 ---0 1 2 3 4 5 P

Xand L

riw. 10-30. PQ diagram for triform missile.

odd or even functions of p. When the analysis is carried out and F and T
separated into their component parts, we obtain

I(') .oow, + f I"o I ov" + f &ollor +/f eol'O + f Soo0'2(r° 2 -_q2)

-5 f (wr - vq) - f8°111(w q -5 to)
-5 terms of third degree (10B-3)

Z A) W M)q200 00= +oo ,w)o"" folor - fFo oq -+ fdoh(r' -
+ 2 ?W + £&(jV2 - VI) + 2f61)'oV

+ f]jo',(wr - vq) + fr& (voq + vr)
-+ terms of third degree (1013-4)
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tj- O + IN,0v + t~or + tQoq + to(w V2)

- 2tjP20wv + t -OO2(r2 - q2) - 2tooo2rq + to0o1(wr - vq)
_ u t l,,q + vr) + terms of third degree (1OB-5)

N =troooW - tjH'OOv + ooor- tro)q + tpw V2)

+ 2tVowv + to0)02(r2 - q2) + 2t'1o 2rq + tgj 1(wr - vq)
+ tQ°1 (wq + vr) + terms of third degree (10B-6)

These equations for a triform missile are to be compared with Eqs.
(10-14) and (10-15) for a cruciform missile. The significant difference is
that the cruciform missile expansions contain no terms of second degree
whereas those for the triform contain many such terms.

Turning now to the expansions for the thrust force and rolling moment
X and L of a triform missile, we construct the PQ diagram in accordance
with the selection rule, Eq. (10A-5). The PQ diagram is shown in Fig.
10-30. A single term of degree zero appears

P =0 Q =o
i k j 1
0 0 0 0

The terms of degree two correspond to P = 1, Q = 1.

P=I Q=I

i k j 1
0 1 0 1

0 1 1 0
1 0 0 1
1 0 1 0

The general expansions for X and L are thus

X = Xoooo + XoolIWW + XIooiV(' + XoioiQV + XiooV1J
+ terms of third degree (10B-7)

L = loooo + ooo-- lloC + tjoojv& I- lollOp o + 1liOO'v
+ terms of third degree (1OB-8)

Because X and L are real, the following equalities must hold:

4o01= 4o Xi = 0 Xf 0 = 0
X -1 = X o 20)o = 0 ipoo = 0
1(o) = 0

1001 = "100011

loo1 = U11o VI)o = 0

The final real expansions for X and L are

X =4oo+ 2xo)(wr + qv) + 2zxo 1 (wq - vr)
+ zjOo(w2 + v2) + xV1z(r2 + q2) + terms of third degree (10B-9)
L°o o + 21 1,(wr + qv) + 2l oo1(wq - vr)
+1%oo(W2 + V2 ) + l°Iro(r 2 + q2)- + terms of third degree (lOB-10)
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These equations for X and L are to be compared with Eqs. (10-12) and
(10-13) for a cruciform missile. It is seen that the expansions are iden-
tical through terms of second degree.

Let us round out the analysis by consideration of missiles of 2-gonal
and mirror symmetries. The PQ diagrams based on the selection rules,
Eqs. (10A-4) and (10A-5), are given in Fig. 10-31. Inspection of this
figure reveals that the expansions for F and T contain terms of odd degree

Q
5

IL I I I I 2
,T I -1/,

S i ",,IJ I I/ I
3( , -," -- 'I I I I

2 )I

0 1 2 3 4 5 P
Fand T

Q,

4 - 3 4 5hP
4 I . . .. I .. . "

XandL

FiG. 10-31. PQ diagram for missile with 2-gonal and mirror symmetries.

only (as for a cruciform missile), in contrast to the expansions for a tri-
form missile which contain terms of all but degree zero. For terms of
first degree we have the conditions P = 1, Q = 0, and P = 0, Q = 1.

P =I Q=0 P =o Q= 1
i k j I i k j I
0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0

The expansions for F and T in complex form are

F = flooov + foloo' + foolow + foooC$ + terms of third degree (lOB-1 1)
T = hooov + toiooP + tooiow + toooi6 + terms of third degree (10B-12)
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When the complex-valued functions fiikl and tijk, are split into r( l and
imaginary parts which are either odd or even functions of p, we obtain,
for Y, Z, 3f, and N,

Y = (fUVoo + fiO)w + (f 1o - fAN)v + (f V1 - f °o )
+ (fVo + ffo)r + terms of third degree (1OB-13)

Z = (f&fo + fEo)w + (f1o fO)v + (fo h - f&EoIo)q
+ (f I+o1 + f8001o)r + terms of third degree (10B-14)

= (t016 + tB)W + (t 0 - Ap°bo)V + (t1 - MooI)
+ (too1 + toolo)r + terms of third degree (10B-15)

N' (tt ooo + t'jo)w + ( - t4o o)v + (too - tb1do)q
(0), + oooo)r + terms of third degree (10B-16)

Consider now the thrust force X and the rolling moment L, all possible
terms of zero and second degree appearing in the PQ diagram of Fig.
t0-31. For the terms of second degree, we have

P=2 Q=0 P=I Q=I P=0 Q =2

i k j I i k j I i k j 1
2 0 0 0 1 1 0 0 0 2 0 0
1 0 1 0 0 1 1 0 0 1 0 1
o o 2 0 1 0 0 1 0 0 0 2

0 0 1 1

The complex expansions for X and L are thus

X = Xoooo + Xoo11WO + XIoOIVIo + Xo11oPo + X1 ooVV, + Xoo0oW 2

+ X2000V 2 ± Xl1OOV&) + X00 0 2W
2 + X0200o2 + X0100"V

+ terms of fourth degree (10B-17)
L = 10000 + lOlW&' + 11ooc,-VO+ 1011otO + l+oov 11 -+/10o2o 2

+ 12 00 0
p2 + l1010VW + 10002CO' + 0200p2 + lo101,

+ terms of fourth degree (10B-18)
When the relationships among the functions xijki and lijki are taken into
account, the real expansions for X and L are
X = X&1o + (X1 0 + Xo + x~o)W

+ -Xl4 - Xoo xfhq
+ (xj~o- x03c - X1g1 0)V2 + (X11 ~~q

+(X0 1 +X20 -+- X+o2)r 2 + 2(X0002 - XfoAo)rq
+2(x1o0 - xno0 )vw + 2xVo, 1(wq + rv) - 2x" 9),(wr - vq)

+ 2xJ0(w)q - vr) + 2x(°, -
1(wr + vq)

+ terms of fourth degree (10B-19)
L '00 + (MAP'o + M o + 2 ) 2 +(i' - o'o - loo)V2

O 10( ) O2
(/ 2 - lO)q 2 + M1 o + o + 40002)r2

+ 2(1002 - lo)rq + 2(/2 0 - lT6o)WV + 2lj 1V°I(wq + vr)
+ 214')1o(wq - vr) + 2lJ)o1 (wr + vq) - 21oo(wr + vq)

+ terms of fourth degree (10B-20)
The derivatives with respect to u, v, w, p, q, and r have been determined,
and those which are zero are shown in Fig. 10-5 for four cases.
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Acceleration stability derivatives, 355, All-movable controls planar configu-
357 rations, loading distribution

general formulas in terms of apparent due to control deflection, numer-
masses, 374 ical example, 220

slender triangular wing, 377, 378 panel loading coefficient, 221
Ackeret theory, classification, 15 pitching effectiveness, 214-219, 224,

description, 15, 16 225
swept wings, 25 body forces, 216-218

Addition of volume at angle of attack, boundary conditions, 214
lifting surface of minimum drag, 311 calculative example, 224, 225

Aerodynamic controls, prediction tech- center of pressure, 219
niques, general approach, 208 configuration lift, 218

Aerodynamic heating, effect, on laminar doublet solutions, 215, 216
skin friction 330-334 panel forces, 216-218

on turbulent skin friction, 334-336 potential function, 216
physics, 326-330 rolling effectiveness, 221-225

Afterbody effects, planar wing-bod: -m- analytical solution, 222
binations, 118, 131-134, 140 calculative example, 224, 225

Air-jet spoilers, definition, 210 nonslender configurations, 224
Airfoils, base-pressure correlation, 317- numerical values, 223

321 physical explanation, 223
(See also Base-drag correlation) reverse-flow methods, 221, 222

Airplanes versus missiles, 1 reverse roll, 224
All-movable controls, coupling effects, All-movable tip controls, definition, 209

228-234 lift effectiveness, 239
boundary conditions, 229, 230 numerical values of effectiveness, 240
coupling, no control, 231 Alle's crossiow theory, center of pres-

pitch controls, 231-233 sure, 89, 90

roll control, 233, 234 sure, 89, 90
loading coefficient., for horizontal lift force, 89, 90

panels, 230 Angle, of attack, effect on base pressure,
for vertical panels, 231 322

summary of results, 232 sine definition, 5
symmetry properties of velocity small angle definition, 5

components, 229, 230 tangent definition, 5
types of couplings, 228, 231 of bank, 3, 4

cruciform configurations, 225-227 of sideslip, 4-6
pitching effectiveness, 225, 226 sine definition, 5, 6

maximizing pitch control, 226 small angle definition, 5
panel-panel interference, 226, 227 tangent definition, 5, 6

rolling effectiveness, 226-228 Angle-of-attack drag, supersonic airfoils,
characteristics feature of cruci- 290

form arrangements, 226 Angular displacements, pitch, 350-353
effect of radius-semispan ratio, roll, 350-353

227, 228 yaw, 350-353
numerical results, 228 Apparent mass, boundary conditions for,
panel-panel interference, 226, 227 380
reverse-roll, 226 circle, 372

planar configurations, 213-225 coordinate system, 365
loading distribution due to control cruciform wing, circular body, 372

deflection, 220, 221 definition, 379
body loading coefficient, 221 ellipse, 372

437 =
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Apparent mass, examples in use of tables, Base-drag correlation variahles influ-
387-389, 391-393 encing, angle of attack, 322

damping in roll, cruciform missile, base configuration, 314
392 393 boattail angle, 314, 315

multiInned missile, 392 heating and cooling, 323
planar missile, 392, 393 Mach number, 315, 316

lift of cruciform missile, 391, 392 Reynolds number, 315, 316, 318
general formulas, acceleration deriva- tailfins, 322

tives, 374 Bernoulli's equation, 12-14
velocity derivatives, 369-371 compressible flow, steady, 13

general method, derivatives, 364-371 unsteady, 12
for evaluation, 378-386 linearized form, 14

inertia coefficients, definition, 366 Bessel functions, modified, 42, 43, 56, 57
line, 371 Biot-Savart law, 153
midtail empennage, circular body, 372 Blunt base, flow behind 312, 313

elliptical body, 373 theoretical model of ow, 312
multifinned body, three or more fins, types of flow, 312, 313

373 Blunt leading edges, leading-edge sue-
notation in theory, 380, 382 tion, 293
planar midwing, circular body, 372 Boattail angle, 314, 315
regular inscribed polygon, 373 Bodies, of least pressure foredrag, 280-
slender cruciform wing, 386-388 287
slender triangular wing, 385-386 of minimum wave drag (see Kdrmdn
table, 37i-374 ogive; Newtonian body of least
tangent-tail empennage, circular body, pressure foredrag; Sears-Haack

373 body)
Arrow lifting surfaces, minimum drag at Body of revolution, base-pressure corre-

angle of attack, 309-311 lation, 317-321
boundary-layer limitations, 311 (See also Base-drag correlation)
drag-rise factor, 309, 310 linear theory, 34-49
numerical values, 310 angle of attack, 37-39

Arrow wings, pressure drag, 291, 292 zero, 34-37
leading-edge suction factor, 292 (,See also Slender body of revolution)
zero angle of attack, 291 Body alone, definition, 113

Aspect ratio of triangular wing, effect on in empennage, definition, 403, 404
stability derivatives, 395-402 Body axes (see Axes)

damping, in pitch, 397-401 Body vortices, 89-107, 406-409
in roll, 396, 397 body of general cross-section, 94-107

d ral effect, 401, 402 lift and sideforce due to, 96-101
Magnus forces, 394, 402 motion of vortex pair in presence of,
rolling moment due to yaw, 402 94-96
static stability, 395, 396 rolling moment due to, 101-107

Average skin friction, flat plate, turbu- body of revolution, 85-94
lent flow, 334 center of pressure, 89, 90

Axes, body, general types, 3, 4. 6 forces due to, 89, 90
pressure coefficient in, 48 " location of vortex separation, 86
stability derivatives, 350-353 motion of pair in presence of circu-

lar cylinder, 91-94
positions and strengths, 85-89

Base drag, 261-263, 311-323 coupling effects between, 101
Base-drag correlation, 312-323 magnitude compared to wing vortices,

airfoils, 317-322 97, 98
effect, of Mach number, 318 tailless configuration, 406-409

of Reynolds number, 318, 321 damping in roll, 408, 409
transitional case, 320-322 static stability derivatives, 406, 407
turbulent case, 317, 318, 322 Bound vortices, 146

bodies of-revolution, 317-323 Boundary function, 383
effect, of Mach number, 319 Boundary-layer thickness, 316

of Reynolds number, 320, 321 Boundary layers, flat plate, 325-330
transitional case, 321 static temperature profile, 326
turbulent case, 319, 320, 322 total pressure profile, 326

cone-cylinder combination, 323 types, 325, 326
correlation equation, 316, 317 velocity profile 325, 326
theoretical model of flow, 312 (See also Skin friction)
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Bump on circular cylinder, pressure dis- Cone-cylinder combinations, vortex
tribution, 83 84 strengths, 87

Busemann second-order theory, classi- Cones, equivalent flat plate, 341
fication, 15 laminar skin friction, 340, 341

description, 16 supersonic pressure foredrag, 276-278
hinge-moment coefficients, 247-250 turbulent skin friction, 341
section thickness effects on control Conformal maping, 25-30

effectiveness, 243, 244 circle, into ellipse 27
into planar midwing and body

combination, 27
Calculative example (see Illustrative into planar wing, 28

examples) general formulas, 25-30
Calculus of variations, use in drag mini- table, 27, 28

mization, 281, 286 Conical flow theory,-classification, 15
Camber drag, supersonic airfoils, 288, description, 17

289 Conical shock-expansion theory, drag of
Canard control, definition, 210 nonslender noses, 278-280
Cauchy-Riemann equation, 381 Control deflection, sign conventions, 211
Center of pressure, definition, 20 Control reversal, definition, 212

rectangular wing, 24 Control surfaces, bank-to-turn, 3
slender body of revolution, 69 cruciform, 2
tangent ogive, 69, 70 "Control surface" drag method, 264
triangular wing, 21, 22, 378 Convolution theorem, 47

Characteristic functions, quasi-cylindri- Cooling, effect on transition point, 320
cal bodies, 82, 83 and heating, effect on base pressure,

Circle, apparent mass, 372 323
Circular cylinder, motion of vortex pair Correlation equations, base pressure,

in presence, 91-94 316, 317
Circulation, 145 Coupling effects, in all-movable controls,
Circulation distribution, effect on wake 228-234

shape, 168 angle of attack and angle of sideslip,
Classifications of missiles, control sur- 125-129, 131

faces, 2 panel loading, for cruciform wing-
environment, 2 body combinations, 123, 175,
guidance system, 1, 2 176
propulsion system, 2 for planar wing-body combina-
trajectory, 2 tions, 126, 127
trim and control, 2 angle of attack and thickness, 115,Combined flow field, 297 116 122 123

Comparison between experiment and body loading, for cruciform wing-
theory, damping in roll of triangu- body combinations, 123
lar wings, 397 for planar wing-body combina-

lift, and center of pressure of ogive- tions, 115, 116
cylinder combination, 90 panel loading, for cruciform wing-

of planar wing-body combination, body combinations, 122 123
135, 136 for planar wing-body combina-

pressure distribution on body of tions, 115, 116
revolution, 85 drag of wings alone, 288-290

Complex potential, 27-30 potential, lift versus no lift for slendercircular cylinder in uniform flow, 29 body, 53
definition, 27 pressure coefficient, angle of attack
ellipse, banked with respect to lateral and vortices in tail plane, 205-207

axis, 30 slender bodies, angle of attack and
of constant a/b ratio, expanding, thickness, 71, 72, 78

30 body expansion and angle of attack,
in uniform flow, 30 74

planar midwing and body combina- lift and sideforce, vortices in pres-
tion, 30, 115 ence of body, 101

uniformly expanding circle, 29 Covering o perations, 358
Cone-cylinder combinations, base pres- Cross-coupling derivatives, 213

sure, 323 "Cross-talk" in aerodynamic controls,
lift carry-over,-6b 213
lift distribution by slender-body Cross-wind force, definition 114

theory, 68 Crossflow drag coefficient, definition, 89
vortex positions, 88 uniformity, 90

l1
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Crossfiow planes, body of revolution, 40 Damping, in roll, triangular wing, 396,
definition, 6, 40 397

Crossflow vortices (sec Body vortices) comparison between theory and

Cruciform empennage, stability deriva- experiment, 397

tives, illustrative example, 412-416 effect of aspect ratio, 397

Cruciform missile, damping in roll, 392- slender-body theory, 396, 397

394 supersonic wing theory, 396, 397

lift and sideforee, 391, 392 in yaw, cruciform empennage, 416

mirror symmetry, 359 tailless cruciform configuration, 412

rotational symmetry, 359 Damping derivatives, definition 358

stability derivatives, 358-362, 386- Damping parameter of missile, definition,

392, 421-427 
252

301, 361 effect-of altitude, 253
zero, 3suberitical, 252

Cruciform wing, circular body, apparent supercritical, 252
mass, 372 Deadwater region, 86, 263, 312

definition, 6 slender body, 52, 53
slender, apparent mass, 386-388 Dihedral effect, definition, 358

stability derivatives, gyroscopic, triangular wing, 401, 402
390-391 effect of aspect ratio, 401, 402

Magnus, 390, 391 linear theory, 401, 402
static oe, 3-17389 slender-body theory, 401 402

vortex model, 173-177 Dissociated boundary layer, shin friction,
analytical solution, 173, 174 331
calculative example, 174-177 Double-wedge airfoil, supersonic drag,

leapfrogging, 176 289
vortex positions, 175, 176 Double-wedge wing, transition, 337

shape of wake, 45 ° bank, 177 Doublets, 37, 38
vortex position, 45* bank, 177 Downwash angle, definition, 144

Cruciform wing-body combination, defi- Downwash lag concept, 411
nition, 112 Drag, slender bodies, due to lift, 52-54

interference, 121-124, 130 formulas for, general, 52
calculative example, 135-137 showing Mach-number depend-
coupling between thickness and ence 54, 55

angle of attack, 122, 123 simpliied, 52
forces, 124, 130 subsonic, 59

effect of bank angle on, J24, 130 supersonic, 51-55
loading, 123, 124 Ward's, 51, 52

body 124 Drag components for complete missile,
panels, 123 261-265, 269-341

moments, 130 base drag, 261, 311-323
potential function, 122 pressure foredrag, 261, 269-311
velocity components, 123 skin friction, 261, 313-341

vortex model (see Cruciform wing) wave drag and wake drag, 264
Cusps, drag curves, 291, 292 Drag curve, analytical properties, 265-
Cuts, logarithmic, 62 267

soure, 99 drag polar, 265, 266
vortex, 99 drag-rise factor, 266

Cylinders, turbulent skin friction, 341 lift coefficient for minimum drag, 266
maximum lift-drag ratio, 266, 267
minimum drag ecefficient, 266

optimum lift coefficient, 266, 267
D'Alembert's paradox, 59 Drag interference, definition, 294
Damping, in pitch, cruciform empennage, Drag polar, definition, 265, 266

415, 416 Drag-rise factor, definition, 266
tailless cruciform configuration, 409- effect of leading-edge suction on, 267,

412 268
triangular wing, 399-401 lifting surfaces of minimum drag, 308-

effect of aspect ratio, 399-401 310
slender-body theory, 399-401 arrow, 309, 310
supersonic wing theory, 399-401 triangular, 308
types of pitching motion, 397-399 lower bounds on, 303-306

in roll crucifor-" empennage, 414, 415 wing-body vortex drag, 303-306
tailfess crue'*. rm configuration, 407- wing-body wave drag, 303-306

409 wing vortex drag, 303-306
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Drag-rise factor, lower bounds on, wing Heating and cooling effect on base pres-

wave drag, 303-306 sure, 323
physical interpretation, 268, 269 Helix angles, 356

Higher-order effects, all-movable con-
trols, 243-247

Effective aspect ratio, 22 angle of attack, 246, 247

Ellipse, apparent mass, 372 control deflection, 245, 246

Elliptical integrals, amplitude, 31 control section thickness, 243, 244

complete, 31 Higher-order stability derivatives, 355

modulus, 31 Hinge-moment coefficient, Busemann

Elliptical potential distribution, 150-151 second-order theory, 247-250

horseshoe vortex representation, 151 calculative example, 2418-250
center of pressure shift, 248wake shape for, 150 32 estimatio, 247-250

Empennage, stability derivatives, 392, etratio , 247
402-416 general ap roach, 247

(See also Tailless configuration) Horizonta plane symmetry, defini-

Entropy gradients, drag of- tangent ogive, tion, 6
Horizontal reference plane, definition,278 210

Environment classification of missiles, 2 a0
AAMorizontal tail, defnition, 403.408

ASIM 2 Horseshoe vortex, incompressible, 139,
ASR, 2 151

AUM, 2 representation of elliptical poten-

SAM, 2 tial distribution, 151

1UM, 2 supersonic, 154-156

Equation, of linear aerodynamics, 12 versus incompressible horseshoe

of motion, missile, impulsive pitch vortex, 156

control, 251, 259, 260 regions of influence, 155

Equivalent-body concept, 298, 299 Trefftz plane flow, 155
velocities, 154

Hypersonic similarity law, 276

Favorable interference, supersonic "lift Hypersonic similarity parameter, 276-
catching," 311 279

Feeding sheet in body-vortex theory, 91
Fineness ratio, 6 Illustrative examples, angle of attack
Flat plate, boundary layer, 325-330 and of bank, C
Flat vortex sheet (see Wing-tail inter- apparent-mass coefficients of slender

ference) triangular wing 385, 386
F6ppl-points, 92, 94 center of pressure of tangent ogive,

vortex strength for, 92 69, 70
Fourier -transforms, slender-body theory, downwash field behind planar wing

55-58 and body combination, 169-171
Free-vortices, slender configurations, 96- drag comparison between Sears-Haaek

107 body and K.rmin-ogive -285
lift and sideforce, 96-101 drag-curve parameters for double-
rolling moment, 101-107 wedge triangular wings, 293

triangular wing, rolling moment, 106, forces on tail-section of planar wing-
107 body-combination, wing-tail inter-

Frequency parameter,_11 
ference, 195-197

hinge-moment coefficient of all-mov-
able triangular- control, 248-250

Gaps, all-movable controls, 242, 243 laminar skin friction, cone, 340-341
large deflections, 243 on flat plate with aerodynamic
small deflections, 242, 243 heating, 332-334

Glossary of special terms, 6, 7 panel forces under combined angles of

Guidance-system types, 1-3 attack and sideslip, triangular
beam-riding, 2 wings, 127-129-
command, 1 pitching and rolling effectiveness of
homing, 2 -all-movable controls, planar "en-

active, 2 figuration 224, 225
passive, 2 pressure distributions due to bump on
semiactive, 2 circular cylinder, 83, 84

Gyroscopic stability derivatives, slender rolling moment of triangular wing,
cruciform wing, 390, 391 free vortices, 106, 107
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Illustrative examples, section thickness Kdrm6.n ogive, volume, 284
effects on control lift effectiveness, Kutta-Joukowski law, 152
244

simple sweep theory, triangular wing
with supersonic edges, 24, 25 Laminar base flow, definition, 312

stability derivative contributions of (See also-Base-drag correlation)
cruciform empennage, 412-416 Laminar skin friction 330-334

tail interference factors for discrete Laplace transforms, slender-body theory,
vortices in plane of tail panels, 41-44
194 Leading-edge sources, Jones-type, 337

thickness drm and camber drag, Leading-edge thrust (suction), effect of,
double-wedge airfoil, 289 on drag-rise faor, 267, 268

turbulent skir friction on flat plate effect on, of leadng-edge bluntness,

with aerodynamic heating, 335, 293
336 of -trailing-edge sweep, 292

vortex model for planar wing-body triangular-wing formula, 292
combination, 162-165 "Leapfrogging," 172, 176, 177

vortex paths for cruciform wing at Lift, general formula for slender bodies,
45' bank, 174-177 48-50

wing-body interference, planar wing- slender bodies of revolution, 66-68
body combination, 136, 137 Lift-cancellation technique, trailing-

Impulsive pitch control, damping edge controls, 235-237
parameter, 252 Lift "carryover," 131

effect of -altitude on,253 cone-cylinJer body, 68
response rate, 253 Lift. coefficient for minimum drag,

equation of motion, derivation, 259, definition, 266
260 Lift ratios, all-movable controls, body

nondimensional, 252 lift ratio kB, 217, 213
solution to, subcritical damping, 252 panel lift ratio k., 217, 218

su ereritical damping, 252 wing-body combination, body lift
naturalfrequency, 252 ratio K8 , 119, 120, 131-133

Included angle, definition, 3, 6 panel lift ratio kw, 119, 120, 131
Interdigitation .ngle, definition, 7 panel-sideslip lift ratio, Kp,, 125-129
Interference effeetc, favorable, 311 Lifting surfaces, cruciform, 2

nonsleider wing-body combination, Line, apparent mass, 371
134-137 Line pressure source, subsonic, 17-19

static stability derivatives, 403-406 suporsonic, 17-19
tailless configuration, damping in roll, trailin6,-dge controls, 235, 236

407-409 Loading coefficient, definition, 20
(See also Afterbody effects; Cruciform Loading distribution, definition, 20

wing-body combination; specific Local skin-friction coefficient, definition,
types of inlerference) 329

Interference facto:, tail, 192-194 laminar, 333, 334
Interference potential, -definition, 113 turbulent, 334, 335
Isentropic law, 9 Longitudinal aspect ratio, definition, 305

Lower bound on drag-rise factors, wings
and wing-body combinations,

Jet c. 'rol definition, 210 vortex drag, 303-306
Jet vane, definition, 210 wave drag, 303-306
Jones's criterion, least drag due to lift, Lower vertical tail, 403, 405

302-306
minimum thickness drag, 296, 297

Jones's line pressure source, 17-19, 235, Magnus stability derivatives, slender
236, 337, 338 cruciform wing, 390, 391

triangular wing, 395, 402
slender-body theory, 402

K rmtn ogive, 281, 284-287, 299 supersonic wing-theory, 395, 402
area distribution, 284 Maple-Synge analysis, cruciform mis-
comparison, with Newtonian body, sile, 358-362 421-427

286 287 general method, 358
with §ears-Haack body, 285 triform and other missiles, 362, 363,

coordinates, 284 427-431
drag coefficient, 284 Maximum lift coefficient, supersonic
shape compared to Newtonian body, speeds, triangular wings, 246

286 wings of o~her planforms, 246, 247

lj"
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Maximum lift.drag ratio, definition, 266 Nonlinearities, wing-tail interference,
Mean-enthalpy method, laminar skin effect of tail height, 197, 198, 202,

friction, 331-334 203
first, 331 shock-expansion interference, high
second, 332 tails, 202, 203

turbulent skin friction, 334-336 static stability, planar wing-body
Method, of apparent masses, 364-374 combinations with high tail, 197,

(See also Apparent mass) 198
of characteristics, -classification, 15 Nonslender wing-body combination,

description, 16 interference effects, 134-137
of inertia coefficients, 364-374 ealeulative example, 135-137

Midtail empennage, apparent mass, cir- Normal plane, definition, 7, 40
eular body, 372 Nose control, definition, 210

elliptical body, 373 Notation,skin friction 324 325
Minimum drag coefficient, definition, 266 stability derivatives: angles, 351

wingsalone, 291 axes, 351
Mirror symmetry, 358 forces, 351
Missile attitude, pitch, 350-353 moments, 351

roll, 350-353 velocities, 351
yaw, 350-353

Missiles versus airplanes, 1 Ogive-cylinder body, vortex positions, 88
Modulus of elliptical integral, 31 wgit vortex separation, center of pres-
Moment, slender body of revolution, 69 w vre se

tangent ogive, 69, 70 sure, 90
(See also specific configurations) lift, 90

Multifinned body, damping in roll, 392 location, 86

with three or more fins, apparent- mass, pressure distribution, 85

373 vortex strengths 87

Munk's airship theory, 39 Optimum lift coefficient, definition, 266
Order-of-magnitude symbol, physical

meaning, 11

N-gonal symmetry, 359
NACA area rule discovery, 298, 299 Panel-panel interference, effect on panel

equivalent-body concept, 298, 299 loading, 126, 127
K6drm~n ogive, 299 cruciform configuration, 126, 127
limitations, 299, 300 planar configuration, 126, 127
Sears-Haaek body, 299 panel center of pressure, 127

Natural frequency of mi3sile, definition, rolling effectiveness of cruciform
252 arrangements, 226-228

effect of altitude on, 253 triangular wing alone, 127-129
Newtonian body of least pressure fore- Parabolic arc body, slender, lift distribu-

drag, accuracy of drag prediction,-287 tion, 68
shape, oradt number

bluntness of nose, 286 Physical model, blunt base flow,_312
comparison with .Krmdn ogive, drag, Physical plane, definition,-26

28 Physical roperties of air, enthalpy, 332
shape,286 Prand' numer, 332

coordinates, 284 specific heat, 332
shape1 286 variation with temperature, 332

Newtonian impact theory, 15, 285 viscosity, 332
drag of nonslender bodies, 278, 280 Pitch control, coupling between cruci-

Nonlinearities, aerodynamic controls, form all-movable controls, 228-234
242-247 definition, 211, 2L2

boundary-layer separation, laminar, impulsive, equation of motion for, 259,
245 260

turbulent, 245 maximizing, for cruciform arri, nge-
deflection-for incipient-separation, ments, -226

246 Pitch damping, effect, of &, 411, 412
gap effects, 242, 243 of q, 410
higher-order effects of angle-of Pitching effectiveness, definition, 212

attack and control deflection, 242, Pitching moment, reverse-flow methods,
245-247 wing-tail interference, 201

maximum lifting capabilities, effect Pitching-moment formula, slender
of-planform, 246, 247 bodies, 48-51

section thickness influence on lifting Planar confi urations (see All-movablef -effectiveness, 243, 244 controls

El
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Planar midwing, circular body, apparent Pressure drag wings alone,mass, 372 

287-29 aPlanar missile. damping in roll, 392-394 comparison between experimentPlanar-wing-body combination, defini- and theory, 291tion, 112 coupling among effects of-angle-ofdownwash field, calculative example, attack, camber, thickness, 288-290169-171 cusps in-drag curves, 291, 292choice of number of vortices per drag charts, 290panel, 171 leading-edge suction, 292 293effect of radius-semispan ratio, 170, minimum wave drag, definition, 291171 separation, 293static stability (see Tail forces and thickness drag, 287-290moments due to wing vortices) wings and wing-body combinations ofvortex model (see Slender planar wing- least drag at angle of attack,body vortex model) 302-311vortex paths and wake shapes, 166-168 addition of volume, 311effect of body on, 167 arrow lifting surfaces, 309-311effect of circulation distribution on camber and- twist, 305, 306
wake shape, 168 design considerations, 306

elliptical, 168 drag-rise factor, vortex drag, 303triangular, 168 wave drag, 304, 305F6ppl points, 9, 16, 167 Jones's criterion for least wave drag,paths, 91-94, 166, 167 302, 303
Planar wing-body interference, 114-121 triangular lifting surfaces, 306-309afterbody effects, 118, 123-134, 140 Pressure foredrag, bodies of least drag atbody lift, 118-120, 130, 139, 140 zero angle of attack (see Kdrmaincenter of pressure, body, -134 ogive; iewtonian body; Sears-complex potential, 115 Haack body)

coupling between -thickness and angle definition, 263of attack, 115, 116 nonslender bodies, conical noses,lift, carryover to body, 120 275-280complete configuration, 117, 130 correlation by hypersonic similaritylift ratios, Kn, 119, 120 parameter 276-279Kw, 119, 120 range ofapplicability of predictionloading coefficient, body, 116, 117 methods, 279, 280wing, 116, 117 tangent ogive, 278, 279moments, 130 theories for drag, 278, 279panel lateral center of pressure, 119, conical shock-expansion, 278, 279121 Newtonian, 278panel lift, 118-120, 129, 139, 140 tangent-cone methods, I and 2,rule of thumb-for lift 120 278, 279simplified vortex model, 138-140 Van Dyke- second-order, 278, 279span loading, 118 von Krirmdin and Moore, 278velocity omponents,:body, 1-16 slender bodies of given shape, 269-275panel, -116 with circular base, 271, 272Potential difference, versus span loading, with cylindrical base, 271157, 165 drag due to lift, circular base, 273-trailing edge of slender wings, 145, 146 274Potential equation, choice of form, 8 drag formula of Ward, 51, 52, 269compressible flow, linear unsteady, pointed at both ends, 270, 27110-12 wing-body combinations at zero anglenonlinear steady, 8-10 of-attack, 294-296cylindrical coordinates, 35, 41, 42 drag components, 2V5Potential function, compressible flow, 9 drag interference, first and secondPrandtl-Schlichting equation, 334 definitions, 294Pressure coefficient, definition, 13 quasi-cylindrical body, 295in slender-body theory, body axes, 48 rule of thumb, 295
vortex-angle of attack coupling in Princifal -part, 383plane of tail, 205-207 Propu sion systems, missiles, 2Pressure drag, components, base drag,

263 Quasi-cylindrical bodies, 80-84
foredrag, 263 axes, 80defining integral, 262 boundary conditione, 81

definition, 262 characteristic functions fo circular
wings alone, -arrow, 291 bodies, 82, 83
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Quasi-cylindrical bodies, illustrative Rolling u, of vortex sheet, "fully-rolled-
example, 83, 84 up condition, 149-151

notation 80 horseshoe vortex, 151
potential function, 81, 82 lateral position-of vortices, 152
pressure coefficient, 82 shape of sheet, 150

Quasi-cylindrical theory, classification, 15 tearing of edges, 148
description, 17, 80-84 vortex strength, 151, 152

Quasi-cylindrical wing-body drag, super- Rotary stability derivatives, 355, 357
sonic, 205 Rotational symmetry, 358

Rule of thumb, 120, 295
wing-body combinations, drag, 295

Reaction jet, definition, 210 lift interference, 120
Reattachmcnt point, 312
Recovery factor, definition, 327

flat plate, laminar flow, 331 Schulz-Grunow equation, 334
turbulen6 flow, 334 Sears-H1aaek body, 270, 280-284, 299

Recovery temperature, definition, 327 area distribution, 282
Rectangular wings, aerodynamic charac- comparison with KdIrmdtn ogive, 285

teristics, 22-24 coordinates, 284
aspect ratio, classification by, 23 drag- coefficient, 281-283

effective, 22 volume 283
center of pressure, 24 Section lift coefficient, 20
-lift-curve slope, 22 Selection rule, Maple-Synge analysis,
lift distribution, 22, 23 422
span loading, 23 Scparation,-boundary-layer, 245-246

Reference area, stability derivatives, 355 incipient 245, 246
Reference axes, stability derivatives, 350 induced Uy control deflection, 245,

slender triangular wing 374, 375 246
Reference length, stability derivatives, laminar versus turbulent, 245

355 plateau pressure, 245
Regular inscribed polygon, apparent drag effects on wings alone, 293

mass, 373 of vortices from body of revolution,
Resistance stability derivatives, 355, 356 85-89
Response rate of missile pitch control, Shock-expansion interference, effect of

253 Mach number, 203
effect of altitude on, 253 high-tail, planar wing-body combina-

Reverse-flow methods, all-movable con- tion, 202. 203
trols, rolling effectiveness of planar physical explanation, 201, 202
configurations, 221-224 pitching-moment nonlinearity, 203

trailing-edge controls, pitching effec- Shock-expansion theory, classification,
tiveness of planar configurations, 15
238-240 description, 16

wing-tail interference, 198-201 Shock-interference control, definition,
(See also Tail forces and moments 210

due- to -wing vortices) Sideforce formula, slender bodies, 48-50
Reverse roll, definition, 224 Sidewash angle, definition, 144

panel-panel interference, 226, 227 Sign conventions, control deflection, 211
Ridge-line sinks, Jones type, 337 Simple sweep theory, classification, 15
Roll control, coupling between all-mova- description, 24, 25

ble cruciform controls, 228-234 trailing-edge controls, 240, 241
definition, 211, 212 Singularities, line pressure source, 18

Rolling effectiveness, of all-movable con- logarithmic, 62
trols, 221-224, 226-228 slender-body theory, 41

cruciform arrangements, 226-228 trailing-edge control, subsonic hinge
planar arrangements, 221-224 line, 236

definition, 212, 213 Sinks (see Sources and sinks)
Rolling moment, due to wing-tail inter- Skin friction, 261-263, 323-341

ference, reverse-flow methods, 201 average value in turbulent flow, 334
due to yaw, triangular wing, 402 calculative example for flat plate,

slender-body theory, 402 332-336
supersonic wing theory, 402 laminar flow, 332-334

triangular wing, free vortices, 106, 107 turbulent flow, 335, 336
~ollng up of vortex sheet,-slender wing, cones 340, 341

148-153 cylinders, 341
elliptical potential distribution, 150 laminar, 330-334
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Skin friction, local skin-friction coeffi- Slender circular cones, pressure coeffi-
cient, 329, 333, 334 cient due, to angle of attack, 73

definition, 329 to thickness, 72, 73
laminar, 333 Slender- elliptical cones, 74-80
turbulent, 334 axis conventions, 74

nonuniform surface temperature, 341 comparison between drags of circular
notation, 324, 325 and elliptical cones, 79, 80
relation to velocity profile, 328 drag, 79
transition effect on, 337-339 lift, 75
turbulent, 334-336 moments, 75
variables influencing, 336-340 notation, 74, 79
wind tunnel versus free flight, 328 pressure coefficient due, to angle of
wing-body combinations, 338 attack, 78

Slender body of revolution, 66-74 to thickness, 77
center of pressure, 69 sideforce, 75
complex potential, 67 Slender planar wing-body vortex model,
coupling between pressures due to 156-166

thickness and angle of attack, 71, center of gravity 159, 160
72 circulation distribution, 157, 158

lift, 66-68 table, 158
lift-curve slope, 68 illustrative example, 162-164
loading, 70-74 effect of bank angle, 165
moment, 69 initial downwash and sidewash
pressure -coefficients, 70-74 angles, 163, 164

Slender-body theory, classification, 15 initial vortex positions, 163
range of validity for circular cones, initial vortex strengths, 163-165

73 image vortices, 158-161, 163
subsonic, 55-59 induced velocities, 161, 162

boundary conditions, 56 two-vortices-per-panel model, 160, 161
d'Alembert's paradox, 59 vortex path, 162
drag formula, 59 vortex strengths, 157, 159
evaluation of coefficients in potential Slender triangular wings, 394-402

function series, 58, 59 damping, in pitch, 399-401
series solution for potential equa- in roll, 396, 397

tion, 57 dihedral effect, 401, 402
use of Fourier transforms, 55-58 Magnus forces, 402

supersonic, 40-55 rolling moment due to yaw, 402
accuracy of velocity components, 46 static stability derivatives, 395, 396
assumptions underlying, 40, 41 Slender-wing vortex model, 145-148
body of revolution at angle of attack, bound vortices, 146

39, 40 circulation 145
boundary conditions, 45, 46 effect, of shock waves, 147
differences between subsonic and of trailing-edge sweep, 148

supersonic 40 potential difference, 145, 146
evaluation of coefficients in-series for trailing-vortex strength, 145

potential function, 47, 48 Slender-wing vortex sheet (see Rolling up
linearization of boundary conditions, of vortex sheet)

46 Source out, 99
method of Ward, 40 Source cut 99
order of magnitude of velocity com- Sources and sinks, body of revolution,

ponents, 46 line pressure source, 17, 18
region of validity of series solution, relation between source strength and

44 body shape, 36
series form, complex potential, 44 od shape, 6

potential functions, 44 Span-load distribution, definition, 20
(See also Slender circular cones; Slender elliptical, 20

elliptical cones; Slender planar wing- Span loading versus potential difference,
body vortex model; Slender triangu- 157, 165
lar wings; Slender-wing vortex Speed of sound, 10
model) Spring constant, missile, 358

Slender circular cones, 72, 73, 79, 80 Stability derivatives, complete empen-
comparison, between drags of circular nage, 402-416

and elliptical cones, 79, 80 cruciform empennage, 412-416
between slender-body -theory and cruciform missiles 358-362, 421-427

exact theory, 73 cruciform triangufar wing, 386-391
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Stability derivative, cruciform wing- Supersonic wing theory, triangular-wing
body combination, 391, 392 stability derivatives, dihedral

definitions, 354 effect, 401, 402
inertial coefficients, Bryson method, Magnus forces, 402

363-374 rolling moment due to yaw, 402
multifinned empennage, 392 static stability derivatives, 395, 396
reference axes, 350-353 Symmetrical wing, definition, 7
slender triangular wing, 374-378, 385,

386
triangular wings, effect of aspect ratio, Tables, apparent-mass coefficients,

394-402 371-374
triform and other missiles, 362-363, center of pressure of tangent ogive, 70

427-431 classification, of aerodynamic theories
various types, 355-358 used in text, 15

Stability derivatives, types, 355-358 of missiles, 2
acceleration, 355, 357 complex potentials for various flows,
higher-order, 355 29, 30
resistance, 355, 356 conformal transformations, 27, 28
rotary, 355 357 coordinates of bodies of least wave
static (see Static stability deriva- drag, 284

tives) direction cosines of body axes, corn-
velocity, 357 v bined pitch and bank, 4

Stagnation point, vortices in crossflow small pitch and yaw displacements,
past circular cylinder, 92, 93 353

Stagnation temperature formula, 330, stability analysis, 352
331 nondimensional circulation distribu-

Static stability, of planar wing-body-tail tion of wing panels, 158
combinations (see Tail forces and nondimensional ratios for symmetrical
moments due to wing-vortices) deflection of -all-movable controls

of wing-body-tail combinations, high mounted on circular body, 218tails, 202, 203 slender-body parameters for loading
shock-expansion theory, 203 due, to bank, 127

Static stability derivatives, 357 to pitch, 119
cruoiform empennage, 413, 414 standard conventions and symbols for
tailless configuration, 403-406 stability derivatives, 351
triangular wing, effect of aspect ratio values of KB/Kw, 140

on 395, 396 Tail control, definition, 210
slender-body theory, 395, 396 Tail effectiveness, definition, 182, 183
supersonic wing theory, 395, 396

Static temperature profile, boundary Tail fins, effect on base pressure, 322
layer, 326 Tail forces and moments due to wing

Strip theory, classification, 15 vortices, 194-198
description, 16 calculative example, planar wing-body-

Subsonic leading edge, definition, 7 tail combination, 195-198
Supersonic area rule, 296, 300-302 effect of tail height, 198

constructural procedure, 300, 301 lift-curve nonlinearity, 197
drag formula, 300 moment-curve nonlinearity, 197,
limitations, 301, 302 198

body shape, 301 tail effectiveness, 197
source-strength rule, 300 tail lift, 196, 197

Supersonic leading edge, definition, 7 vortex positions, 195, 196
Supersonic lifting-line theory, classifica- calculative method, 194, 195

tion, 15 reverse-flow methods, 199-201
description, 17 basic theorem, 199

Supersonic lifting-surface theory, 17 boundary conditions, 200
Supersonic wing theory, classification, 15 lift, on body, 201

description, 16, 17 on tail panels, 200
rolling effectiveness of all-movable pitching moment, 201

controls, 227 rolling moment, 201
trailing-edge control characteristics, Tail interference factor, definition, 192,

234-238 193
triangular-wing stability derivatives, evaluation for discrete vortices in

395-402 plane of tail panels, 194
damping, in pitch, 399-401 methods for calculation, 193

in roll, 396, 397 typical chart, 193

4
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"Tailless" configuration definition, 403 Trailing-e&ge controls, lift offectivenessstability derivatives, damping in fr tp controls, 238-240

pitch, 409-412 effect ofradius-semispan ratio, 239,downwash lag concept, 411 240due to &, 411, 412 line source-sink analysis, 235, 236due to q 410 numerical results, 240wing-tail configuration, 409-412 reverse-flow methods, 238-240damping in roll, 407-409 shock detachment from hinge line, 241body vortex effects, 408, 409 simple-sweep theory, 240, 241interference effects, 407, 408 subsonic hinge-line pressure singu-wing vortex effects, 408, 409 larity, 236illustrative example, cruciform em- tip sector effects, 237pennage, 412-416 trailing-edge sector effects, 237damping, in pitch, 415, 416 Trailing vortices (see Slender-wing vortexin roll, 414, 415 model)in yaw, 416 Trajectory types, ballistic, 2sideforce and yawing moment due glide, 2
to yaw, 413, 414 skip, 2

pars, 403-405 Transformed plane, definition, 260y 403 404 Transition, double-wedge wing, 337, 338horizontal-tail (fin), 403, 408 wing-body combination, 338lower vertical tail (fin), 403, 405 Transitional base-flow, 312upper vertical tail (fin), 403, 405 (See also Base-drag correlation)ventral fin, 405 Transitional location, drag due tostatic 403-407 viscous- crossflow, 275body vortex effects, 406, 407 effect on viscous drag, 263, 264interference effects, 403-406 factors determining, 264weathercock stability, 405 Trefftz plane definition, 7wing vortex effects, 406, 407 -horseshoe vortex, 155, 303Tangent cone methods 1 and 2, drag of Triangular lifting surface, minimum dragnonslender noses, 278-280 at angle of attack, 306-309Tangent ogive, definition, 7 attempts to-achieve lower bound,drag by hypersonic-similarity, 278, 279 309effect of rotation term, 278 drag-rise factor, 308slender, center of pressure, 69, 70 lower bound on wave drag, 308Tangent-tail empennage, circular body, numerical values, 307
apparent mass, 373 optimum vortex drag, 306,-307Theories classification, 14-17 Triangular wing, acceleration derivatives,Ackeret, 15 slender wing, 377, bynBusemann, 15 aerodynamic characteristics by linear

conical flow, 15 theory, 18-22method of characteristics, 15 subsonic leading edges, 2, 21Newtonian impact, 15 center of pressure, 21
uasi-cylinder, 15 lift-curve slope, 20Shock-expansion, 15 lift distribution, 20simple sweep, 15 span-load- distribution, 20slender body, -15 supersonic leading edges, 21, 22strip, 15 center of pressure, 22supersonic lifting line, 15 lift-curve slope, 21supersonic wing, 15 " lift distribution, 21Theory of residues, use in apparent-mass span-load distribution, 21theory, 378, 379, 383 apparent masses, 385, 386Thickness drag, supersonic airfoil, 288, double-wedge airfoil section, drag-289 curve parameters, 293Total temperature, definition, 326 rolling moment, free vortices, 106, 107Totfl-temperatureprofiles in boundary stability derivatives, 374-378, 385, 386,layers 326 394-402Trailing-edge controls, 234-241 (See also Triangular wing stabilityanalytical approach to, 234 derivatives)

definition, 209 velocity- derivatives, slender wing,design chart references, 237, 238 374-377effect of sweep on lift effectiveness, Triangular wing stability derivatives,241 damping, in pitch, 397-401lift-cancellation techniques of analysis, slender-body theory, 399-401235-237 supersonic wing theory, 399-401
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Triangular wing stability derivatives, Viscous crossflow, effect on body drag,
damping, in pitch, types of pitch- 274, 275
in oscillation, 397-399 theory 15, 85-107

in roll, 396, 397 Viscous drag (see Skin friction)
slender-body theory, 396 Volume, drag due to, lifting surfaces, 311
supersonic wing theory, 396, 397 von K.4rmdn and Moore method, drag of

dihedral effect, 401, 402 nonslender noses, 278, 280
slender-body theory, 401, 402 Vortex cut, 99
supersonic wing theory, 401, 402 Vortex drag, definition, 264

leading-edge suction, 396, 402 Vortex-induced velocities, calculation,
Magnus forces, 402 153-156
roll due to yaw, 402 supersonic horseshoe vortex, 154-156

slender-body theory, 402 two-dimensional incompressible

supersonic wing theory, 402 vortices, 153, 154, 156
static stability, 395, 396 Vortex model, cruciform wing, 173-177

slender-body theory, 395 cruciform wing-body combination, 172,
supersonic wing theory, 395 173

Triform missiles, mirror symmetry, 359 planar-wing-body combination,
rotational symmetry, 359 138-140, 156-166
stability derivatives, 362, 363, 427-431 slender wing, 145-148
zero stability derivatives, 361, 362 trailing edge normal to flow, 145-147

Trim and control means, canard, 2 trailing-edge-swept, 148
tail control, 2 Vortex pair, mutual indication between,
wing control, 2 149

Turbulent base flow, 312 in presence, of circular cylinder, 91-94
(See also Base-drag correlation) asymptotic spacing, 94

Turbulent boundary layer, virtual origin, complex potential, 91
339 F6ppl positions, 92

Two-dimensional incompressible vortices, paths, 93, 94
153-156 stagnation points in body cross-

Two-dimensional supersonic airfoil ffow plane, 92, 93
theory, drag of wings alone, 288-290 of noncircular body 94-96

Types of controls, air-jet spoilers, 210 complex potential, 94, 95
all-movable, 209 paths 96
all-movable tip, 209 transformation, to circular cross-
canard, 210 section, 95
jet, 210 velocity, 96
jet vane, 210 Vortex paths, pair in presence, of circular
nose, 210 cylinder, 93, 94
reaction jet 210 of noncircular body, 96
shock-inter/erence, 210 planar wing-body combination,
tail, 210 166-168
trailing-edge, 209 series method of calculation, 177
wing, 210 variable vortex strength, 96

Vortex sheet, body of revolution, 52, 53
rolling up (see Rolling up of vortex

Upper vertical tail, definition, 403,-405 sheet)
Vortex strength, planar wing-body com-

bination, 139
Van Dyke's second-order theory, 263, trailing vortices, 145

278-280, 287 Vortices, horseshoe, 139
drag of nonslender noses, 278-280, 287 supersonic, 154-156

Velocity profiles, boundary layer oa flat two-dimensional incompressible, 153
plate, 325, 326 (See also Body vortices)

Velocity stability derivatives, general
formula based on apparent masses,
369-371 W function, supersonic drag of quasi-

slender flat triangular wing, 374-377 cylindrical wing-bodies, 295
Ventral fin, 405 Wake, definition, 145
Vertical plane of symmetry, definition, Wake drag, definition, 264

210, 211 Wake shape, cruciform wing at 45* bank,
Virtual-origin, turbulent boundary layer, 177

339 effect of circulation distribution, 168
Viscosity limitation on drag-rise factors, planar wing-body combination, 168

305 Ward's drag formula, 52
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Wave drag, definition, 264 Wing-tail interference, loading on tail
Wave-drag-rise factor, wings or wing- sections, boundary conditions,

body combinations, 305 184
Wave-making dra . 265 loading conventions, 185
Weathercock stabihty, definition, 357 panel complex potential, 186, 187
Wing alone, definition, 113 panel loading, 188

pressure drag (see Pressure drag) transformation of tail cross-section
supersonic drag, lower bounds, 303-306 into unit circle, 185

vortex drag, 303-306 types, 188
wave drag, 303-306 flat vortex sheet, 182-184

Wing-body combinations, components, intersection with tail panels, 181
afterbody, 113 shortcomings of flat-sheet model, 184

forebody, 113 simplified model, 182
winged section, 113 tail effectiveness, 182-184

drag a' supersonic speeds lower definition 182, 183
bound, on vortex drag, 303-306 numerical value, 183

on wake drag, 303-306 tail span greater than wing span,
minimum pressure drag, due to angle 183

of attack 302-306 tail span less than wing span, 183
at zero angle of attack, 269-311 physicel explanation, 181-182

(,3ee also KdIrmdn ogive; NAGA Wing types, cruciform, 6
area rule; Sears-Haack body; Wing vortex effects, tailless configura-
Supersonic area rule) tion, 406-409

transition, 338 damping in roll, 408, 409
Wing-body interference, 112-143 static stability, 406, 407
Wing control, definition, 210 Wing vortex strength compared to body
Wing panel, definition, 7 vortex strength, 97, 98
Wing-tail combination in tandem, damp-

ing in pitch, 409-412 Yaw control, definition, 212, 213
Wing-tail interference, discrete vortices Yawing effectiveness, definition, 212, 213

in plane of tail, 184-192 Yawing-moment formula, slender-body
lift on tail section, 189-192 48-51

body, 189, 190
comparison with flat sheet, 192
effect on tail height, 192 Zero stability derivatives, cruciform mis-
span loadings, 190 Vaile, 361
tail effectiveness, 190-192 slender, 390
tail panels, 189, 190 triform missile, 361, 362

loading on tail sections, 184-189 2-gonal missile with mirror symmetry,
body complex potential, 186, 187 362
body loadings, 188 Zero wave drag, 265

t'


